

TECHNICAL REPORT

A systematic review and metaanalysis of the prevalence of chlamydia, gonorrhoea, trichomoniasis and syphilis in Europe **ECDC** TECHNICAL REPORT

A systematic review and meta-analysis of the prevalence of chlamydia, gonorrhoea, trichomoniasis and syphilis in Europe

This report was commissioned by the European Centre for Disease Prevention and Control (ECDC) through service contract No. ECD. NP/2023/DPR/26576, coordinated by Otilia Mårdh and produced by Gesundheit Österreich Forschungs- und Planungs GmbH.

Authors:

Ilonka Horváth, Dominika Mikšová, Richard Pentz, Ingrid Rosian-Schikuta, Tanja Schwarz and Isabel Soede.

The following ECDC colleagues have contributed to this report by providing suggestions during the implementation of the project: Charlotte Deogan, Lina Nerlander and Anastasia Pharris.

Acknowledgements

The authors would like to thank Daniela Antony (GOEG) and Helena Simana (ECDC) for peer-reviewing the search strategy.

Registration and protocol

This review was registered in PROSPERO (ID: CRD42023492418) and the protocol is published therein.

Support

Funding was provided by the European Centre for Disease Prevention and Control (ECDC). ECDC actively engaged in the review process by providing feedback on the search strategy and the protocol and clearance of the final report.

Conflicts of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of this review and there is no financial interest to report.

Suggested citation: European Centre for Disease Prevention and Control. A systematic review and meta-analysis of the prevalence of chlamydia, gonorrhoea, trichomoniasis and syphilis in Europe. Stockholm: ECDC; 2024.

Stockholm, September 2024

ISBN 978-92-9498-745-7 doi 10.2900/0805127 Catalogue number TQ-01-24-001-EN-N

© European Centre for Disease Prevention and Control, 2024

Reproduction is authorised, provided the source is acknowledged.

Contents

Contents	
Abbreviations	
Glossary	
Executive summary	
1. Background	
1.1 Rationale	
1.2 Objectives	
1.3 Research questions	4
2. Review methods	5
2.1 Eligibility criteria	5
2.2 Information retrieval	6
2.3 Data extraction	7
2.4 Quality assessment	7
2.5 Evidence synthesis	8
2.6 Deviations from the review protocol	8
3. Review results	
3.1 Study selection	
3.2 Study characteristics	13
3.3 Chlamydia prevalence estimates	
3.4 Gonorrhoea prevalence estimates	
3.5 Trichomoniasis prevalence estimates	56
3.6 Syphilis prevalence estimates	70
4. Discussion	
5. Conclusions	
6. References	

Figures

Figure 2. No. of identified prevalence estimates in young people incl. proxy populations per country; for all 4 STIs. 12 Figure 3. No. of identified prevalence estimates in MSM, sex workers and PWID per country; for all 4 STIs. 13 Figure 5. Pooled estimates for chlamydia in women, total. 19 Figure 6. Pooled estimates for chlamydia in women, interpresentative of the general population 20 Figure 7. Pooled estimates for chlamydia in women, other proxy populations 20 Figure 8. Pooled estimates for chlamydia in men, total 22 Figure 10. Pooled estimates for chlamydia in men, total 22 Figure 11. Pooled estimates for chlamydia in young women, total 23 Figure 12. Pooled estimates for chlamydia in young women, representative of the general population 24 Figure 13. Pooled estimates for chlamydia in young women, representative of the general population 27 Figure 14. Pooled estimates for chlamydia in young women, representative of the general population 27 Figure 14. Pooled estimates for chlamydia in young women, other proxy populations 27 Figure 15. Pooled estimates for chlamydia in young mome, total 29 Figure 16. Pooled estimates for chlamydia in young men, total 29 Figure 17. Pooled estimates for chlamydia in young men, total 29 Figure 21. Pooled estimates for chlamydia	Figure 1. No. of identified prevalence estimates in general population incl. proxy populations per country; for all 4 STIs	11
Figure 4. Pooled estimates for chlamydia in women, total	Figure 2. No. of identified prevalence estimates in young people incl. proxy populations per country; for all 4 STIs	12
Figure 5. Pooled estimates for chlamydia in women, representative of the general population 19 Figure 6. Pooled estimates for chlamydia in women in antenatal care (proxy population) 20 Figure 7. Pooled estimates for chlamydia in women, other proxy populations 20 Figure 8. Pooled estimates for chlamydia in men, total 22 Figure 10. Pooled estimates for chlamydia in men, other proxy populations 22 Figure 11. Pooled estimates for chlamydia in young women, total 26 Figure 12. Pooled estimates for chlamydia in young women, representative of the general population 26 Figure 13. Pooled estimates for chlamydia in young women, representative of the general population 26 Figure 15. Pooled estimates for chlamydia in young women, nepresentative of the general population 27 Figure 15. Pooled estimates for chlamydia in young women, other proxy populations 27 Figure 15. Pooled estimates for chlamydia in young men, total 29 Figure 16. Pooled estimates for chlamydia in young men, total 29 Figure 17. Pooled estimates for chlamydia in MSM visiting STI clinics 33 Figure 18. Pooled estimates for chlamydia in MSM visiting STI clinics 33 Figure 21. Pooled estimates for chlamydia in MSM on PrEP 34 Figure 21. Pooled estimates for chlamydia in MSM on PrEP 34 <td>Figure 3. No. of identified prevalence estimates in MSM, sex workers and PWID per country; for all 4 STIs</td> <td>13</td>	Figure 3. No. of identified prevalence estimates in MSM, sex workers and PWID per country; for all 4 STIs	13
Figure 6. Pooled estimates for chlamydia in women in antenatal care (proxy population) 20 Figure 7. Pooled estimates for chlamydia in women, other proxy populations 20 Figure 8. Pooled estimates for chlamydia in men, total 22 Figure 10. Pooled estimates for chlamydia in men, other proxy populations 23 Figure 11. Pooled estimates for chlamydia in young women, total 26 Figure 12. Pooled estimates for chlamydia in young women, representative of the general population 26 Figure 13. Pooled estimates for chlamydia in young women, representative of the general population 27 Figure 14. Pooled estimates for chlamydia in young women, other proxy populations 27 Figure 15. Pooled estimates for chlamydia in young women, other proxy populations 27 Figure 16. Pooled estimates for chlamydia in young men, total 29 Figure 17. Pooled estimates for chlamydia in young men, representative of the general population 29 Figure 21. Pooled estimates for chlamydia in MSM visiting STI clinics 33 Figure 21. Pooled estimates for chlamydia in MSM visiting STI clinics 33 Figure 22. Pooled estimates for chlamydia in MSM on PrEP 34 Figure 23. Pooled estimates for chlamydia in MSM on PrEP 34 Figure 24. Pooled estimates for chlamydia in female sex workers 36		
Figure 7. Pooled estimates for chlamydia in women, other proxy populations20Figure 8. Pooled estimates for chlamydia in men, total22Figure 9. Pooled estimates for chlamydia in men, representative of the general population22Figure 10. Pooled estimates for chlamydia in young women, total26Figure 12. Pooled estimates for chlamydia in young women, representative of the general population26Figure 13. Pooled estimates for chlamydia in young women, representative of the general population26Figure 14. Pooled estimates for chlamydia in young women, other proxy populations27Figure 15. Pooled estimates for chlamydia in young momen, other proxy populations27Figure 16. Pooled estimates for chlamydia in young men, total29Figure 17. Pooled estimates for chlamydia in young men, total29Figure 18. Pooled estimates for chlamydia in young men, representative of the general population29Figure 21. Pooled estimates for chlamydia in MSM visiting STI clinics33Figure 20. Pooled estimates for chlamydia in MSM on PrEP34Figure 21. Pooled estimates for chlamydia in MSM on PrEP34Figure 22. Pooled estimates for chlamydia in female sex workers36Figure 23. Pooled estimates for chlamydia in male and transgender sex workers36Figure 24. Pooled estimates for chlamydia in momen, total39Figure 25. Pooled estimates for gonorrhoea in women, total39Figure 26. Pooled estimates for gonorrhoea in women, total39Figure 27. Pooled estimates for gonorrhoea in women, total39Figure 27. Pooled estimates for gonorrhoea		
Figure 8. Pooled estimates for chlamydia in men, total22Figure 9. Pooled estimates for chlamydia in men, representative of the general population22Figure 10. Pooled estimates for chlamydia in young women, total23Figure 11. Pooled estimates for chlamydia in young women, total26Figure 12. Pooled estimates for chlamydia in young women, total26Figure 13. Pooled estimates for chlamydia in young women, in antenatal care (proxy population)27Figure 14. Pooled estimates for chlamydia in young women, other proxy populations29Figure 15. Pooled estimates for chlamydia in young men, total29Figure 16. Pooled estimates for chlamydia in young men, representative of the general population29Figure 17. Pooled estimates for chlamydia in young men, representative of the general population29Figure 16. Pooled estimates for chlamydia in young men, representative of the general population29Figure 17. Pooled estimates for chlamydia in young men, other proxy populations30Figure 18. Pooled estimates for chlamydia in MSM visiting STI clinics33Figure 21. Pooled estimates for chlamydia in MSM on PrEP34Figure 22. Pooled estimates for chlamydia in MSM on PrEP34Figure 23. Pooled estimates for chlamydia in genale sex workers36Figure 24. Pooled estimates for chlamydia in menale and transgender sex workers36Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 26. Pooled estimates for gon		
Figure 9. Pooled estimates for chlamydia in men, representative of the general population22Figure 10. Pooled estimates for chlamydia in men, other proxy populations23Figure 11. Pooled estimates for chlamydia in young women, total26Figure 12. Pooled estimates for chlamydia in young women, representative of the general population26Figure 13. Pooled estimates for chlamydia in young women in antenatal care (proxy population)27Figure 14. Pooled estimates for chlamydia in young momen, other proxy populations27Figure 15. Pooled estimates for chlamydia in young men, total29Figure 16. Pooled estimates for chlamydia in young men, representative of the general population29Figure 17. Pooled estimates for chlamydia in young men, representative of the general population29Figure 18. Pooled estimates for chlamydia in young men, representative of the general population30Figure 19. Pooled estimates for chlamydia in MSM visiting STI clinics33Figure 20. Pooled estimates for chlamydia in MSM on PrEP34Figure 22. Pooled estimates for chlamydia in MSM on PrEP34Figure 23. Pooled estimates for chlamydia in female sex workers36Figure 24. Pooled estimates for chlamydia in male and transgender sex workers36Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 26. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 27. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 27. Pooled estimates for gonorrhoea in women, represent		
Figure 10. Pooled estimates for chlamydia in men, other proxy populations23Figure 11. Pooled estimates for chlamydia in young women, total26Figure 12. Pooled estimates for chlamydia in young women, representative of the general population26Figure 13. Pooled estimates for chlamydia in young women in antenatal care (proxy population)27Figure 14. Pooled estimates for chlamydia in young momen, other proxy populations27Figure 15. Pooled estimates for chlamydia in young men, total29Figure 16. Pooled estimates for chlamydia in young men, representative of the general population29Figure 17. Pooled estimates for chlamydia in young men, other proxy populations30Figure 18. Pooled estimates for chlamydia in MSM visiting STI clinics33Figure 20. Pooled estimates for chlamydia in MSM living with HIV.33Figure 21. Pooled estimates for chlamydia in MSM on PrEP.34Figure 22. Pooled estimates for chlamydia in MSM high risk.34Figure 23. Pooled estimates for chlamydia in male and transgender sex workers36Figure 24. Pooled estimates for gonorrhoea in women, total39Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 27. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 27. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 27. Pooled estimates for gonorrhoea in women, representative of the general population39 <td></td> <td></td>		
Figure 11. Pooled estimates for chlamydia in young women, total26Figure 12. Pooled estimates for chlamydia in young women, representative of the general population26Figure 13. Pooled estimates for chlamydia in young women in antenatal care (proxy population)27Figure 14. Pooled estimates for chlamydia in young momen, other proxy populations27Figure 15. Pooled estimates for chlamydia in young men, total29Figure 16. Pooled estimates for chlamydia in young men, representative of the general population29Figure 17. Pooled estimates for chlamydia in young men, other proxy populations30Figure 18. Pooled estimates for chlamydia in MSM visiting STI clinics33Figure 20. Pooled estimates for chlamydia in MSM on PrEP34Figure 21. Pooled estimates for chlamydia in female sex workers36Figure 23. Pooled estimates for chlamydia in female sex workers36Figure 24. Pooled estimates for chlamydia in male and transgender sex workers36Figure 25. Pooled estimates for gonorrhoea in women, total39Figure 25. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)39Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations39Figure 27. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)40Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations40		
Figure 12. Pooled estimates for chlamydia in young women, representative of the general population26Figure 13. Pooled estimates for chlamydia in young women in antenatal care (proxy population)27Figure 14. Pooled estimates for chlamydia in young momen, other proxy populations27Figure 15. Pooled estimates for chlamydia in young men, total29Figure 16. Pooled estimates for chlamydia in young men, representative of the general population29Figure 17. Pooled estimates for chlamydia in young men, other proxy populations30Figure 18. Pooled estimates for chlamydia in MSM visiting STI clinics33Figure 20. Pooled estimates for chlamydia in MSM living with HIV33Figure 21. Pooled estimates for chlamydia in MSM on PrEP34Figure 23. Pooled estimates for chlamydia in female sex workers36Figure 24. Pooled estimates for chlamydia in male and transgender sex workers36Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 25. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)39Figure 27. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)40Figure 27. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)40Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations40		
Figure 13. Pooled estimates for chlamydia in young women in antenatal care (proxy population)27Figure 14. Pooled estimates for chlamydia in young women, other proxy populations27Figure 15. Pooled estimates for chlamydia in young men, total29Figure 16. Pooled estimates for chlamydia in young men, representative of the general population29Figure 17. Pooled estimates for chlamydia in young men, other proxy populations30Figure 18. Pooled estimates for chlamydia in MSM visiting STI clinics33Figure 20. Pooled estimates for chlamydia in MSM living with HIV33Figure 21. Pooled estimates for chlamydia in MSM on PrEP34Figure 22. Pooled estimates for chlamydia in female sex workers36Figure 23. Pooled estimates for chlamydia in male and transgender sex workers36Figure 24. Pooled estimates for gonorrhoea in women, total39Figure 25. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)39Figure 26. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)40Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations40		
Figure 14. Pooled estimates for chlamydia in young women, other proxy populations27Figure 15 Pooled estimates for chlamydia in young men, total29Figure 16. Pooled estimates for chlamydia in young men, representative of the general population29Figure 17. Pooled estimates for chlamydia in young men, other proxy populations30Figure 18. Pooled estimates for chlamydia in MSM visiting STI clinics33Figure 19. Pooled estimates for chlamydia in MSM living with HIV33Figure 20. Pooled estimates for chlamydia in MSM on PrEP34Figure 21. Pooled estimates for chlamydia in MSM high risk34Figure 23. Pooled estimates for chlamydia in female sex workers36Figure 24. Pooled estimates for chlamydia in male and transgender sex workers36Figure 25. Pooled estimates for gonorrhoea in women, total39Figure 26. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)40Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations40		
Figure 15 Pooled estimates for chlamydia in young men, total29Figure 16. Pooled estimates for chlamydia in young men, representative of the general population29Figure 17. Pooled estimates for chlamydia in young men, other proxy populations30Figure 18. Pooled estimates for chlamydia in MSM visiting STI clinics33Figure 19. Pooled estimates for chlamydia in MSM living with HIV33Figure 20. Pooled estimates for chlamydia in MSM on PrEP34Figure 21. Pooled estimates for chlamydia in MSM high risk34Figure 23. Pooled estimates for chlamydia in female sex workers36Figure 24. Pooled estimates for chlamydia in male and transgender sex workers36Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 26. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 27. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)40Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations40		
Figure 16. Pooled estimates for chlamydia in young men, representative of the general population29Figure 17. Pooled estimates for chlamydia in young men, other proxy populations30Figure 18. Pooled estimates for chlamydia in MSM visiting STI clinics33Figure 19. Pooled estimates for chlamydia in MSM living with HIV33Figure 20. Pooled estimates for chlamydia in MSM on PrEP34Figure 21. Pooled estimates for chlamydia in MSM high risk34Figure 23. Pooled estimates for chlamydia in female sex workers36Figure 24. Pooled estimates for chlamydia in male and transgender sex workers36Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 26. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 27. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)40Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations40		
Figure 17. Pooled estimates for chlamydia in young men, other proxy populations		
Figure 18. Pooled estimates for chlamydia in MSM visiting STI clinics33Figure 19. Pooled estimates for chlamydia in MSM living with HIV.33Figure 20. Pooled estimates for chlamydia in MSM on PrEP.34Figure 21. Pooled estimates for chlamydia in MSM high risk.34Figure 22. Pooled estimates for chlamydia in female sex workers.36Figure 23. Pooled estimates for chlamydia in male and transgender sex workers36Figure 24. Pooled estimates for gonorrhoea in women, total39Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 26. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)40Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations40		
Figure 19. Pooled estimates for chlamydia in MSM living with HIV.33Figure 20. Pooled estimates for chlamydia in MSM on PrEP.34Figure 21. Pooled estimates for chlamydia in MSM high risk.34Figure 22. Pooled estimates for chlamydia in female sex workers.36Figure 23. Pooled estimates for chlamydia in male and transgender sex workers36Figure 24. Pooled estimates for gonorrhoea in women, total.39Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 26. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)40Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations40		
Figure 20. Pooled estimates for chlamydia in MSM on PrEP. 34 Figure 21. Pooled estimates for chlamydia in MSM high risk. 34 Figure 22. Pooled estimates for chlamydia in female sex workers. 36 Figure 23. Pooled estimates for chlamydia in male and transgender sex workers 36 Figure 24. Pooled estimates for gonorrhoea in women, total. 39 Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population 39 Figure 26. Pooled estimates for gonorrhoea in women in antenatal care (proxy population) 40 Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations 40		
Figure 21. Pooled estimates for chlamydia in MSM high risk		
Figure 22. Pooled estimates for chlamydia in female sex workers		
Figure 23. Pooled estimates for chlamydia in male and transgender sex workers36Figure 24. Pooled estimates for gonorrhoea in women, total39Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population39Figure 26. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)40Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations40		
Figure 24. Pooled estimates for gonorrhoea in women, total		
Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population		
Figure 26. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)40 Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations40		
Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations		
Figure 28. Pooled estimates for gonorrhoea in men, total		
	Figure 28. Pooled estimates for gonorrhoea in men, total	42

Figure 20. Decled estimates for somewhere in men remembring of the somewhere langulation	40
Figure 29. Pooled estimates for gonorrhoea in men, representative of the general population Figure 30. Pooled estimates for gonorrhoea in men, other proxy populations	
Figure 31. Pooled estimates for gonorrhoea in young women, total	
Figure 32. Pooled estimates for gonorrhoea in young women, representative of the general population	
Figure 33. Pooled estimates for gonorrhoea in young women in antenatal care (proxy population)	
Figure 34. Pooled estimates for gonorrhoea in young women, other proxy populations	
Figure 35. Pooled estimates for gonorrhoea in young men, total	
Figure 36. Pooled estimates for gonorrhoea in young men, representative of the general population	
Figure 37. Pooled estimates for gonorrhoea in young men, other proxy populations	
Figure 38. Pooled estimates for gonorrhoea in MSM visiting STI clinics	
Figure 39. Pooled estimates for gonorrhoea in MSM living with HIV	
Figure 40. Pooled estimates for gonorrhoea in MSM on PrEP	53
Figure 41. Pooled estimates for gonorrhoea in MSM high risk	53
Figure 42. Pooled estimates for gonorrhoea in female sex workers	55
Figure 43. Pooled estimates for gonorrhoea in male and transgender sex workers	
Figure 44. Pooled estimates for trichomoniasis in women, total	
Figure 45. Pooled estimates for trichomoniasis in women in antenatal care (proxy population)	
Figure 46. Pooled estimates for trichomoniasis in women, other proxy populations	
Figure 47. Pooled estimates for trichomoniasis in men, total	
Figure 48. Pooled estimates for trichomoniasis in men, other proxy populations	
Figure 49. Pooled estimates for trichomoniasis in young women, total	
Figure 50. Pooled estimates for trichomoniasis in young women, representative of the general population	
Figure 51. Pooled estimates for trichomoniasis in young women in antenatal care (proxy population)	
Figure 52. Pooled estimates for trichomoniasis in young men, total	
Figure 53. Pooled estimates for trichomoniasis in young men, representative of the general population	
Figure 54. Pooled estimates for trichomoniasis in MSM high risk	68
Figure 55. Pooled estimates for trichomoniasis in female sex workers	
Figure 56. Pooled estimates for syphilis in women, total	
Figure 57. Pooled estimates for syphilis in women in antenatal care (proxy population)	72
Figure 58. Pooled estimates for syphilis in MSM visiting STI clinics	
Figure 59. Pooled estimates for syphilis in MSM living with HIV	
Figure 60. Pooled estimates for syphilis in MSM on PrEP	
Figure 61. Pooled estimates for syphilis in MSM high risk	
Figure 62. Pooled estimates for syphilis in female sex workers	
Figure 63. Pooled estimates for syphilis in male and transgender sex workers	
Figure 64. Pooled estimates for syphilis in people who inject drugs	81

Tables

Table 1. Condition-Context-Population (CoCoPoP) framework	3
Table 2. Eligibility criteria	5
Table 3. No. of identified prevalence estimates in the general population incl. proxy populations	10
Table 4. Number of identified prevalence estimates in young people incl. proxy populations	11
Table 5. Number of identified prevalence estimates in MSM, sex workers and PWID	12
Table 6. Prevalence estimates for chlamydia in all studied study populations	16
Table 7. Prevalence estimates for chlamydia in the general female population	17
Table 8. Prevalence estimates for chlamydia in the general male population	21
Table 9. Prevalence estimates for chlamydia in young women	
Table 10. Prevalence estimates for chlamydia in young men	
Table 11. Prevalence estimates for chlamydia in MSM	31
Table 12. Prevalence estimates for chlamydia in sex workers	
Table 13. Prevalence estimates for gonorrhoea in all study populations	
Table 14. Prevalence estimates for gonorrhoea in the general female population	
Table 15. Prevalence estimates for gonorrhoea in the general male population	
Table 16. Prevalence estimates for gonorrhoea in young women	
Table 17. Prevalence estimates for gonorrhoea in young men	
Table 18. Prevalence estimates for gonorrhoea in MSM	
Table 19. Prevalence estimates for gonorrhoea in sex workers	54
Table 20. Prevalence estimates for trichomoniasis in all study populations	
Table 21. Prevalence estimates for trichomoniasis in the general female population	
Table 22. Prevalence estimates for trichomoniasis in the general male population	
Table 23. Prevalence estimates for trichomoniasis in young women	
Table 24. Prevalence estimates for trichomoniasis in young men	65

Table 25. Prevalence estimates for trichomoniasis in MSM	67
Table 26. Prevalence estimates for trichomoniasis in sex workers	69
Table 27. Prevalence estimates for syphilis in all study populations	70
Table 28. Prevalence estimates for syphilis in the general female population	71
Table 29. Prevalence estimates for syphilis in young women	73
Table 30. Prevalence estimates for syphilis in MSM	74
Table 31. Prevalence estimates for syphilis in sex workers	78
Table 32. Prevalence estimates for syphilis in PWID	

Abbreviations

СТ	Chlamydia trachomatis
ECDC	European Centre for Disease Prevention and Control
EEA	European Economic Area
EFTA	European Free Trade Association
EU	European Union
GOEG	Gesundheit Österreich GmbH (Austrian National Public Health Institute)
GP	general practitioner
GUM	genito-urinary medicine
HIV	human immunodeficiency virus
MSM	men who have sex with men
NAAT	nucleic acid amplification test
NG	Neisseria gonorrhoeae
NICE	National Institute for Health and Care Excellence (UK)
NR	not reported
PE	prevalence estimate
PrEP	pre-exposure prophylaxis for HIV
PRISMA	Preferred Reporting Items for Systematic reviews and Meta-Analyses
PROSPERO	International Prospective Register of Systematic Reviews
PWID	people who inject drugs
RoB	risk of bias
SR	systematic review
STI	sexually transmitted infections
ТР	Treponema pallidum
TV	Trichomonas vaginalis

Glossary

Cluster sampling	Sampling method where the population is divided into clusters, and a random sample of clusters is selected for analysis
Confidence interval	Range of values that probably contain the true population parameter, with 95% confidence
Convenience sampling	Non-probability sampling method where subjects are chosen based on their availability and accessibility
Forest plot	Graphical display of the results of multiple studies used in meta-analyses to visualise the effect sizes and confidence intervals
Funnel plot	Graphical display used in meta-analyses to assess the presence of publication bias
General population	People living in the European region aged 15 years and above, excluding specific sub-groups or populations
Heterogeneity	Degree of variability among the studies in a meta-analysis
I ² statistic	Measure of heterogeneity in meta-analysis, indicating the proportion of total variation across studies due to heterogeneity rather than chance
Meta-analysis	Statistical technique for combining the results of multiple studies to produce a single pooled prevalence estimate
Non-random	Sampling without random selection, often convenience sampling
Pooled estimate	Combined (prevalence) estimate derived from multiple studies in a meta-analysis
Probability sampling	Sampling method where each member of the population has a known and non-zero chance of being selected for the sample
Prevalence	Proportion of individuals in a population who have an (STI) infection at a specific point in time
Proxy population	Group used as a substitute for the target population for deriving information on the prevalence, when direct access or representation is not feasible
Random sampling	Sampling method that ensures an unbiased representation of the research population
Reporting bias	Systematic errors in the dissemination of research findings, often resulting from selective publication of studies with certain results
Representative	Sample that accurately reflects the characteristics of the broader population from which it is drawn
Specimen	Biological material of an individual's tissue, fluids, or other samples used for laboratory analysis or testing
Sub-group analysis	Examination of the prevalence within specific population subsets
Targeted sampling	Sampling method that specifically targets certain groups or individuals for inclusion in the sample based on pre-defined criteria
Unweighted	Raw calculation of the proportion of individuals in a population with the STI infection of interest diagnosed, without applying any adjustment or weighting factors to the data.

Executive summary

Objectives

Sexually transmissible infections (STIs) represent some of the most prevalent infections globally, with an estimated 375 million new infections with one of the curable STIs each year [1]. About 300 000 new diagnoses of bacterial STIs are reported annually by the European Union (EU)/European Economic Area (EEA) Member States to The European Surveillance System, the main source of epidemiological data for the region. Variations in STI surveillance system characteristics and coverage, together with differences in screening policies and testing practices, hinder the routine surveillance data from providing an accurate picture of STI epidemiology. To better describe the STI epidemiology, to adequately inform primary or secondary prevention efforts, and to provide data for monitoring progress towards the elimination of STIs as a public health threat in Europe requires supplementary epidemiological information, such as prevalence estimates. This systematic review aimed to identify and collate prevalence estimates for the European general population and populations of special interest for the four curable STIs: chlamydia (etiological agent *Chlamydia trachomatis)*, hereinafter CT; gonorrhoea (etiological agent *Neisseria gonorrhoeae*), hereinafter NG; trichomoniasis (etiological agent *Trichomonas vaginalis*), hereinafter TV; and syphilis (etiological agent *Treponema pallidum subspecies pallidum*), hereinafter TP.

Methods

This systematic literature review was carried out to retrieve, assess and synthesise all available data on the prevalence of CT, NG, TV, and TP in European countries (EU/European Free Trade Association (EFTA), United Kingdom (UK) and EU candidate or potential candidate countries) published between 2012 and 2023 in the general population, suitable proxy populations, and the following populations of special interest: men who have sex with men (MSM), sex workers, and people who inject drugs (PWID). The literature search was conducted in a comprehensive set of seven databases and complemented by grey literature searches. The literature was selected independently by two reviewers, and the data was extracted by one reviewer and cross-checked by another. The quality of the studies included was assessed using the Joanna Briggs Institute checklist for prevalence studies. Pooled prevalence estimates were calculated using random effects models. The review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 23 December 2024: CRD42023492418.

Results

Of the 2 113 unique publications screened, 85 publications reporting on 78 unique studies were included. In addition, 16 studies were included from the previous systematic review commissioned by WHO (Rowley et al., 2019) and four studies were identified from sources other than the bibliographic databases.

Overall, the current burden of CT in the European region is estimated to be 2.76% (95% CI 1.65–3.87) among women, and 2.64% (95% CI 0.61–4.67) among men. The prevalence of NG is estimated to be 0.24% (95% CI 0.00–0.50) among women, and 0.10% (95% CI 0.00–0.22) among men. Prevalence of TV is estimated to be 0.69% (95% CI 0.38–0.99) among women, and 0.00% (95% CI 0.00–0.21) among men. The overall prevalence of TP is estimated to be 0.14% (95% CI 0.00–0.29) among women in antenatal care, and no estimates are available for men in the general population. In young people aged 15 to 24 years, the CT prevalence is estimated to be 5.54% in young women and 3.32% in young men. NG prevalence is estimated to be 0.51% in young women and 0.07% in young men. TV prevalence is estimated to be 0.64% in young women and 0.00% in young men. For TP in young people, only one study was identified, conducted among young women in antenatal care, reporting a prevalence of 0.00%.

The STI prevalence estimates available in the identified literature are not generalisable to the whole population of MSM. We calculated pooled estimates for various sub-groups of MSM: In MSM visiting STI clinics, the estimated prevalences are 9.72% (95% CI 8.27–11.16) for CT, 10.46% (95% CI 6.94–13.97) for NG, 0.10% (95% CI 0.00–0.22) for TV and 6.53% (95% CI 3.20–9.86) for TP. Among MSM living with HIV, the estimated prevalences are 6.08% (95% CI 0.75–11.41) for CT, 4.74% (95% CI 0.75–8.72) for NG, 0.94% (95% CI 0.00–2.78) for TV and 14.36% (95% CI 1.10–27.63) for TP. Among MSM on PrEP, the estimated prevalences are 9.57% (95% CI 7.11–12.02) for CT, 8.99% (95% CI 5.31–12.66) for NG and 6.48% (95% CI 3.95–9.02) for TP. Among MSM engaging in 'high-risk' sexual behaviour, the estimated prevalences are 15.35% (95% CI 9.62–21.08) for CT, 14.37% (95% CI 7.76–20.98) for NG, 1.54% (95% CI 0.00–4.67) for TV and 5.21% (95% CI 1.44–8.98) for TP.

In female sex workers, pooled prevalences are estimated to be 5.50% (95% CI 4.31–6.69) for CT, 2.22% (95% CI 0.63– 3.80) for NG, 8.97% (95% CI 6.03–11.91) for TV, and 1.75% (95% CI 0.04–3.46) for TP. Among male and transgender (male to female) sex workers, prevalence estimates were found to be particularly high, with pooled prevalences estimated to be 6.04% for CT, 6.36% (95% CI 0.00–14.25) for NG, and 22.09% (95% CI 5.14–39.03) for TP.

Only two studies were identified for PWID, and both reported on the prevalence of TP. The pooled TP prevalence is estimated to be 1.56% (95% CI 0.45–2.76), based on the studies from Czechia and Serbia.

Conclusions and possible implications for public health practice and/or research

This literature review provides evidence-based prevalence estimates for CT, NG, TV and TP for the general population and some populations of special interest that are useful for policy actions to limit the spread of curable STIs in the European region. However, efficient prevention policies would require the availability of relatively recent prevalence estimates from most of the countries in the region and the current evidence base is insufficient, with sampling dates for national estimates ranging from 2003 to 2022. Moreover, many of the studies that are available have a considerable risk of bias, further limiting the certainty of the available evidence. Key populations, such as sex workers and PWID, are very poorly studied. There are more studies on MSM but they were almost exclusively conducted at STI clinics and are therefore of limited value for estimating the true STI prevalence in the general MSM population. No study was identified to report TP prevalence among men of the general population. The significant gaps in both, the quantity and the quality of the evidence on the prevalence of curable STIs in the European region identified in this review should be addressed in future studies.

Action that can be taken based on this evidence assessment

Against the backdrop of this study, and in line with the recommendations formulated in WHO's Regional action plans for ending AIDS and the epidemics of viral hepatitis and sexually transmitted infections 2022–2030 [2], a number of (public health) actions are advised, especially for countries with a less comprehensive description of STI epidemiology.

Strengthen capacity to describe STI epidemiology:

- conduct prevalence studies representative of the general population, by employing probability-based sampling where prevalence estimates are missing, or routine surveillance is not comprehensive, or does not offer data of acceptable quality;
- consider/collect estimates for proxy populations that may be available from specific settings (such as antenatal care programmes, routine check-ups/screenings for other conditions, or military recruits) for a more feasible and less resource-intensive alternative to representative probability-based sampling studies.

Implement evidence-based STI prevention and control measures:

• use prevalence estimates in combination with other epidemiology data to inform national prevention policies targeting the population groups most affected by STI epidemics, such as young people, specific sub-groups of MSM and sex workers.

1. Background

Sexually-transmitted infections (STIs) are some of the most prevalent infections globally, with an estimated 375 million new infections with one of the curable STIs each year [1]. About 300 000 new diagnoses of bacterial STIs are reported annually by the European Union(EU)/European Economic Area (EEA) Member States to The European Surveillance System, which is the main source of epidemiological data for the region [3]. Variations in STI surveillance systems characteristics and coverage, together with differences in screening policies and testing practices, prevent routine surveillance data from providing an accurate picture of STI epidemiology. To better describe the STI epidemiology, to adequately inform primary or secondary prevention efforts, and to provide data for monitoring progress towards the elimination of STIs as a public health threat in Europe, requires supplementary epidemiological information, such as prevalence estimates. This systematic review is centred around four of the most common curable bacterial STIs: chlamydia (etiological agent Chlamydia trachomatis) hereinafter CT; gonorrhoea (etiological agent Neisseria gonorrhoeae), hereinafter NG; trichomoniasis (etiological agent Trichomonas vaginalis), hereinafter TV and syphilis (etiological agent Treponema pallidum subspecies pallidum), hereinafter TP. These infections can evolve asymptomatically or with a variety of symptoms that can include acute conditions such as cervicitis, urethritis, and genital ulcerations. Untreated, these infections can potentially result in severe complications and long-term sequelae, such as pelvic inflammatory disease, ectopic pregnancy, infertility, chronic pelvic pain, as well as neurological and cardiovascular diseases. When transmitted vertically or during birth, some of the infections may lead to neonatal death, premature delivery, blindness, or severe disability. In addition, bacterial STIs can elevate the risk of both acquiring and transmitting HIV [4, 5]. STIs are also often associated with societal stigma, stereotyping, feelings of vulnerability and shame, and have been linked to incidents of gender-based violence [6]. Due to considerable burden and impact on health, these four infections are targeted for elimination by WHO's global health sector strategies for the period 2022-2030 [7].

1.1 Rationale

The aim of this review is to support the understanding of STI epidemiology in Europe and the monitoring of STI trends, by providing epidemiological information that is not available through routine STI surveillance of diagnosed cases reported to The European Surveillance System. The number of notified cases are dependent on national testing policies and testing practice (including availability of sensitive diagnostic techniques at large scale), which vary by country and over time, and surveillance systems coverage, and reporting practices [8, 9]. More specifically, this review aims to identify and collect/collate prevalence estimates for the European population for the four curable STIs (chlamydia, gonorrhoea, trichomoniasis, and syphilis) indicated by WHO's Regional Office for Europe in its 'Regional Action Plan for Ending AIDS and the Epidemics of Viral Hepatitis and Sexually Transmitted Infections 2022–2030' [2]. The prevalence estimates will inform monitoring of progress towards elimination of STI as public health concern at European level and where estimates are available, at national level.

1.2 Objectives

To identify and collect/collate prevalence estimates for the European population for the four curable STIs (CT, NG, TV and TP). The research question was formulated using the Condition-Context-Population (CoCoPoP) framework [10]:

Table 1. Condition-Context-Population framework

Condition	Context	Population
 Chlamydia: <i>Chlamydia</i> <i>trachomatis</i> infection (CT) Gonorrhoea: <i>Neisseria</i> <i>gonorrhoea</i> infection (NG) Trichomoniasis: <i>Trichomonas</i> <i>vaginalis</i> infection (TV) Syphilis: primary, secondary or early latent <i>Treponema pallidum</i> subspecies <i>pallidum</i> infection (TP) 	EU/EFTA countries + UK + EU candidate and potential candidate countries.	 General population General population 15 years and above; Young people, aged 15-24 years; Women attending antenatal care. Populations of special interest MSM; Sex workers; PWID.

MSM: men who have sex with men, PWID: people who inject drugs

The following 42 countries were included in the review: 27 EU Member States, four European Free Trade Association (EFTA) countries (Iceland, Liechtenstein, Norway, Switzerland), 10 candidate countries and potential candidates to the EU, and the UK (see also Annex 1).

1.3 Research questions

The following research questions were agreed upon between ECDC and the project team for the systematic literature review:

General population

- Q1: What is the **prevalence** of CT, NG, TV, and TP in the general population (15 years and above) of **European countries** according to recent estimates?
- Q1.1: What is the prevalence of CT, NG, TV, and TP among **young people, aged 15-24 years,** in European countries according to recent estimates?
- Q1.2: What is the prevalence of CT, NG, TV, and TP in **women attending antenatal care** in European countries according to recent estimates?

Populations of special interest

Q2.1: What is the prevalence of CT, NG, TV, and TP in **MSM** in European countries according to recent estimates?

- Q2.2: What is the prevalence of CT, NG, TV, and TP in **sex workers** in European countries according to recent estimates?
- Q2.3: What is the prevalence of CT, NG, TV, and TP in **PWID** in European countries according to recent estimates?

Definitions for the primary outcome and populations of interest are set out in Box 1.

Box 1. Definitions

Prevalence was defined as number of people with the STI infection of interest, diagnosed using a reliable/internationally-accepted diagnostic technique in a clinical or randomised sample of the total study population, in a cross-sectional population-based or cohort study, or in a non-randomised experimental study. Prevalence estimates are reported as proportions with 95% confidence intervals (CIs).

General population was defined as people living in the European region aged 15 years and above. Some more specific study populations were defined as **suitable proxy populations** for gathering information on prevalence in the general population, including women making routine gynaecological visits, routine cancer screenings or antenatal care, patients attending community and primary care settings or hospitals for non-STI related reasons, individuals attending family planning clinics and military recruits.

Young people were defined as people aged 15–24 years.

Men who have sex with men (MSM) were defined as men who engage in sexual activity with other men, regardless of sexual identity, including bisexual men (who also have sex with women).

- **MSM using PrEP** were defined as MSM who are actively taking pre-exposure prophylaxis medication to prevent HIV infection.
- MSM living with HIV were defined as MSM who have been diagnosed with HIV infection.
- MSM engaging in chemsex were defined as MSM who use drugs, such as crystal methamphetamine, mephedrone, or GHB/GBL, specifically to enhance their sexual encounters or experiences.

Sex workers were defined as individuals who exchange sex for money, drugs, or goods, including male, female and transgender sex workers.

People who inject drugs (PWID) were defined as individuals who either currently inject or have in the past injected non-medically prescribed psychoactive substances.

2. Review methods

A systematic literature review was carried out to retrieve, assess and synthesise recent prevalence estimates for CT, NG, TV and TP in European countries (EU/EEA, Switzerland, UK and EU candidate or potential candidate countries). The search strategy was designed based on the research questions (see Section 0). The protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 23 December 2023: CRD42023492418.

2.1 Eligibility criteria

Inclusion and exclusion criteria (Table 2) were developed in an iterative process, involving all team members from both ECDC and Gesundheit Österreich GmbH (GOEG).

Table 2. Eligibility criteria

Inclusion criteria	Exclusion criteria
 Publications reporting primary data on prevalence estimates for CT, NG, TV, or TP in humans; and reporting results separately for one of the infections. Examples of included study designs: cross-sectional population-based studies; baseline surveys in randomised controlled trials or cohort studies. 	 Publications only reporting combined STI prevalence, e.g. CT and NG. Publications reporting prevalence data based on self-reported (i.e. unconfirmed) infections. Publications reporting on animal or in vitro infections (e.g. diagnostics used in the laboratory only). Publications reporting modelled data only.
 Publications from 01.01.2018 to last date of search for CT, NG, and TV. Where no representative studies were identified, older studies retrieved by the systematic review by Rowley et al. (2019) were eligible, if specimen collection started after 01.01.2009 [11]. Publications starting from 01.01.2012 to last date of search for TP. Specimens collected after 01.01.2009 (if specimen collection dates are provided). 	 Publications falling outside the specified sampling period or publication date range.
Publications from an EU/EFTA country, UK or an EU candidate or potential candidate country in any language.	Publications reporting data from overseas territories of European countries.
 For prevalence estimates for the general population, sample size must be at least 100 individuals. For prevalence estimates for populations of special interest, there is no restriction on sample size. 	
• Use of appropriate testing method; pathogen- specific appropriate diagnostic principle, as described in Annex 5.	
 General population and proxy population general population 15 years and above; suitable proxy populations; young people, aged 15–24 years; women attending antenatal care. Populations of specific interest MSM; sex workers; PWID. 	 Individuals aged under 15 years. Studies conducted exclusively in populations that were not considered suitable proxies for the general population and are not one of the defined populations of specific interest (see Annex 4).

2.2 Information retrieval

Information sources

Electronic databases

Original publications were retrieved from the following bibliographic databases:

- MEDLINE (EBSCO interface)
- Embase (Elsevier interface)
- The Cochrane Library including Cochrane Database of Systematic Reviews and The Cochrane Central Register of Controlled Trials (CENTRAL) and Cochrane Clinical Answers
- CINAHL (EBSCO interface)
- Scopus
- Web of Science Core Collection
- Web of Science Preprint Citation Index.

Previous systematic review

The systematic review by Rowley et al. (2019) [11] was used to complement the literature search for studies reporting prevalences of CT, NG, or TV with studies from before our search period. The review authors conducted a systematic literature search for CT, NG, and TV for publications published until 29 July 2018.

Grey literature searches and additional sources

In addition to the bibliographic databases, we searched for additional and grey literature in Google Scholar, BASE(Bielefeld Academic Search Engine)¹ and sources listed in the Grey Matters tool² and GreyNet International³. Existing contacts with national and international experts from the Population Health Information Research Infrastructure (PHIRI⁴) and the International Network of Agencies for Health Technology Assessment (INAHTA⁵) were queried for additional published articles or grey literature providing prevalence estimates.

Search strategy

The search strategies combined the vocabulary for CT, NG, TV and TP with vocabulary for 'prevalence'. In addition, a search string was used to limit the search to studies conducted in European countries (see Annex 2). Controlled vocabulary (i.e. MeSH terms) and natural vocabulary (i.e. keywords) were used. The search strategy used only English terms, but no language restrictions were applied in the literature selection.

To focus on recent literature, a stepwise search strategy was applied (see Figure 65). The initial search was limited to publications starting from 1 January 2018. The publications identified through this search were screened and relevant studies were selected (as described below) and grouped by countries. For countries where no study was available for CT, NG, or TV reporting a prevalence estimate in the general population (representative studies), the systematic review by Rowley et al. (2019) [11] was checked for complementary studies with specimen collection after 01.01.2019. For countries where no study was available reporting a prevalence estimate for TP in the general population (representative studies or studies in proxy populations), the literature search was extended to publications starting from 1 January 2012.

The Medline (via EBSCO) search strategy was peer-reviewed by an ECDC librarian not associated with the project, using the Peer Review of Electronic Search Strategies (PRESS) standard [12]. The search was then adapted to meet the thesaurus terms and syntax of the other databases. The complete search strategies are available in Annex 2.

Selection process

References were managed using EndNote bibliographic software (Clarivate Analytics, Philadelphia, US). References were exported into EndNote, where they were de-duplicated. Both title and abstract screening and full-text screening were carried out independently by two reviewers using Rayyan⁶ [13]. The abstract screening was piloted for 100 references, which were assessed by all reviewers contributing to the abstract screening. The decisions on the pilot references were compared, discussed and aligned, in case of discrepancies. Two reviewers completed abstract screening and then the full-text screening, with the requirement for two independent reviewer decisions per reference in both steps. Conflicting decisions were discussed at the end of the screening between the two reviewers who initially rated the respective references. If the conflicting decisions could not be resolved through discussion, a third reviewer was consulted to reach a majority decision. If more than one exclusion criteria was applicable, only one criterion was used to categorise the reference.

¹ <u>https://www.base-search.net/</u> (accessed: 12 March 2024)

² <u>https://www.cadth.ca/grey-matters-practical-tool-searching-health-related-grey-literature</u> (accessed: 12 March 2024)

³ <u>https://greynet.org/greysourceindex.html</u> (accessed: 12 March 2024)

⁴ <u>http://www.phiri.eu</u> (accessed: 12 March 2024)

^s https://www.inahta.org/ (accessed: 12 March 2024)

⁶ <u>https://www.rayyan.ai/</u> (accessed: 12 March 2024)

2.3 Data extraction

Data were extracted from included studies using a pre-specified extraction form developed in consultation with ECDC. The unit for data extraction was not the publication, but the study. A study was defined as a report of prevalence data on STI pathogen for a defined population group, in a defined country, over a discrete period of time. According to this definition, a single publication may include more than one study (e.g. comparing the same population over time; comparing different populations; reporting STI prevalence). Information on any one individual study from several distinct publications was merged in the data extraction for that study.

Study characteristics and prevalence estimates for all studies included were collected in Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia). The extraction form was piloted with five publications to ensure ease-of-use, inclusion of all relevant data items, and consistency between reviewers. Data from these studies were extracted by two reviewers independently. The extracted data were compared, and inconsistencies discussed and aligned. These pilot extraction tables were reviewed by ECDC and revised. Using the final extraction table templates, data from all included studies were extracted by one reviewer for each study and double-checked by a second reviewer. If the information provided in a publication was insufficient, the authors were contacted to request additional information.

Where prevalence estimates were reported from different anatomical sites, we extracted the higher ones. Information on the type of additional samples and anatomical sites was also extracted and is provided in the tables.

Data items

Variables extracted are provided in the data extraction template in Annex 6.

2.4 Quality assessment

The quality of the studies included was assessed using the Joanna Briggs Institute (JBI) checklist for prevalence studies [14], which was also endorsed by the National Institute for Health and Care Excellence (NICE) for quality appraisal of prevalence studies [15, 16]. The criteria in the tool assess potential risk of bias in the studies in the following nine domains: representativeness (1), recruitment (2), sample size description (3) and reporting of study subjects and setting (4), data coverage of the identified sample (5), condition measured reliably (6) and objectively (7), statistical analysis (8), and response rate (9) (see Annex 7). Each of the nine domains is addressed by answering one question with:

- Yes (no or minor concerns)', indicating low risk of bias;
- 'No (major concerns)', indicating high risk of bias;
- 'Unclear (not reported or contradictory)', indicating uncertain risk of bias.

We conducted the quality assessment at outcome level (i.e. studied STI) rather than study level to account for outcome-dependent assessment domains (specifically, required minimum sample sizes and testing methods). We prespecified criteria for each question to enable a coherent assessment by the independent reviewers. Two reviewers first piloted the quality assessment by assessing the same set of five studies in parallel. The assessments were compared, and inconsistencies were discussed and aligned. Quality assessment of the remaining studies was performed by one reviewer for each study and double-checked by a second reviewer. At the end of the process, conflicting assessments were discussed by the two reviewers who initially assessed the respective studies. If the conflicting assessments could not be resolved through discussion, a third reviewer was consulted to reach a majority decision. The results of the quality assessment for all studies and populations included are provided in Annex 8.

We used an algorithm to categorise the studies into low, medium and high risk of bias (RoB). To be considered low RoB, a study had to meet the terms of questions 1 (appropriate sample frame), 2 (appropriate sampling method), 6 (appropriate testing method) and 9 (adequate response rate) and a minimum of five of the nine questions overall. To be considered medium RoB, a study had to meet the terms of questions 6 and 9 and a minimum of five of the nine questions overall.

2.5 Evidence synthesis

Calculations and meta-analyses

Data transformation and calculations

We extracted unweighted prevalence estimates from the included studies and calculated prevalence estimates from studies that only provided numbers of tested individuals and numbers of positive-testing individuals. As very few studies reported confidence intervals (CIs), we calculated all 95%-CIs ourselves using the Wald's method [17].

Pooled estimates and synthesis methods

We used random effects models and present 95% confidence intervals. If there were two or more studies available, we calculated a pooled estimate by meta-analysis. Calculations were performed using the 'rma' function of the R package 'metafor' [18].

Assessment of heterogeneity and sensitivity analysis

We assessed statistical heterogeneity using the I^2 statistic. Statistical heterogeneity is typically high in meta-analyses of prevalence estimates (> 90%) and should therefore not be interpreted using the cut-off values employed in comparative meta-analysis [19, 20].

Sub-group analysis

Sub-group analyses were performed for proxy populations versus representative studies in the general population and in young people as well as based on quality assessment for all populations. Further sub-group analyses that were specified in the review protocol (accessible via PROSPERO: CRD42023492418) were not conducted, either because no reasonable groups could be established or because the respective factors were too heterogeneously reported in the included studies.

Presentation of results

General population and young people

If reported, prevalence estimates for young people were extracted separately from mixed-age studies. All analyses are separated by gender (men versus women). Therefore only studies that provided prevalence estimates separately for men and women are included in the main evidence synthesis and meta-analyses. Studies that only provided a mixed-gender prevalence estimate are only presented in the respective country profiles (see Annex 10). Studies were categorised as either 'representative' (including a representative sample of the general population) or 'proxy' (including a proxy population that was considered suitable for an approximation of the general population). Studies including women attending antenatal care were also considered as 'proxy' studies for the general population.

Men who have sex with men

Studies including MSM were categorised into four groups, based on different assumed risk for STIs:

- MSM visiting STI clinics for studies recruiting MSM in STI clinics with no other relevant inclusion criteria;
- MSM HIV for studies, including only HIV-positive MSM;
- MSM PrEP for studies, including only MSM who take PrEP;
- MSM 'high-risk' for studies, including only MSM with certain sexual behaviour classified as 'high-risk' by the study authors.

In addition, two studies were identified that investigated separate populations not categorised into any of the aforementioned groups by the study authors: MSM engaging in chemsex and MSM reporting sexual behaviour classified as 'low-risk'.

Sex workers

All analyses are separated by gender (female versus male/transgender sex workers).

Country profiles

Country profiles are provided in Annex 10, including summary tables of the studies from the respective country, and forest plots summarising the individual prevalence estimates from those studies.

2.6 Deviations from the review protocol

While the initial plan was to focus solely on the most recent prevalence estimates and to include only studies meeting a certain threshold of methodological quality in the evidence synthesis, the approach was changed early on in the project following consultation with ECDC. No specific threshold of methodological quality was applied, and all studies identified within the searched timeframes were included, rather than just the most recent ones. This approach was chosen in order to increase the likelihood of obtaining prevalence estimates for most of the individual countries and because very few studies of high methodological quality were identified. These changes are reflected in the adapted wording of the research questions.

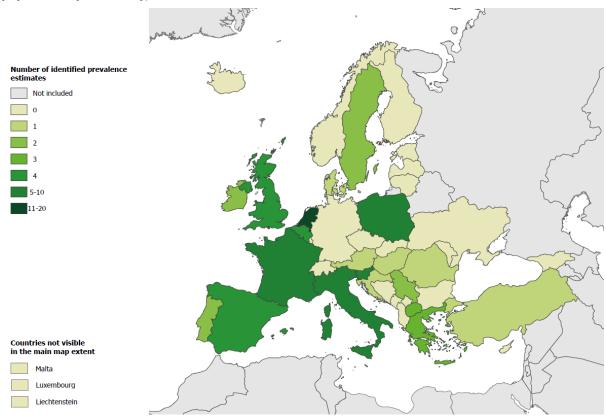
The modified approach led to a considerably higher number of studies being included than initially planned, as well as in increased heterogeneity between the studies, due to the broader timeframe of sampling and varying methodological quality. As a result of this added complexity and due to limited time and resources, certain planned analyses and methodological steps had to be omitted. More specifically, the assessment of publication bias via funnel plots and a detailed assessment of the certainty of evidence were not conducted.

Pooled prevalence estimates for individual countries were not calculated because few countries had several studies on any population available and those that were available were largely heterogeneous. The protocol specified STI/GUM clinic attendees as a population of special interest (Q2.6). However, this population was subsequently excluded from the review. This decision was taken partly to mitigate the increased number of studies included, and partly because information on the STI prevalence in this specific population is of limited use for assessing the epidemiological situation in the general population.

3. Review results

3.1 Study selection

Of the 2 113 unique publications screened, 314 were selected based on title and abstract, and 85 were selected for extraction. These 85 publications reported on 78 unique studies. In addition, we included 17 publications (reporting on 17 studies) from the previous systematic review Rowley et al. 2019 and two publications (reporting on two studies) identified from other sources. The PRISMA flow diagram is presented in Annex 3.


The following tables and figures provide an overview of the number of prevalence estimates available per country. For simplicity, the number of prevalence estimates in these representations is not separated by gender (general population, young people, sex workers) or risk group (MSM). The number of prevalence estimates in these representations does not necessarily correspond to the numbers of individual studies, as in some instances one study provided several estimates (e.g. for men and for women).

Section 0 provides a summary of the characteristics of the included studies per STI and population. For a total of 17 countries (10 EU/EFTA and seven EU enlargement), no recent prevalence estimates were available for chlamydia, gonorrhoea, trichomoniasis, or syphilis in the general population. The list of all studies excluded after full text review, with main reason for exclusion, are provided in Annex 9.

	Cł	nlamyd	lia	a Gonorrhoea			Trichomoniasis			Syphilis			
Country	Representative	Antenatal care	Proxy (other)	Total									
Austria	0	0	0	0	0	0	0	1	0	0	0	0	1
Belgium	4	0	0	0	0	0	0	0	0	0	0	0	4
Croatia	0	1	0	0	0	0	0	0	0	0	0	0	1
Denmark	0	1	0	0	0	0	0	0	0	0	0	0	1
France	0	1	3	0	1	2	0	0	0	0	0	1	8
Greece	0	0	1	0	0	0	0	0	1	0	0	1	3
Hungary	0	0	0	0	0	0	0	0	0	0	1	0	1
Ireland	0	0	1	0	0	1	0	0	0	0	0	0	2
Italy	0	1	2	0	0	1	0	0	2	0	1	0	7
Netherlands	2	1	1	2	1	1	0	1	1	0	1	0	11
Poland	0	0	4	0	0	0	0	0	0	0	1	0	5
Portugal	0	0	0	0	0	1	0	0	1	0	0	0	2
Romania	0	0	0	0	0	0	0	0	0	0	1	0	1
Slovenia	2	0	0	2	0	0	2	0	0	0	0	0	6
Spain	0	1	0	0	1	0	0	0	1	0	1	0	4
Sweden	0	0	1	0	0	1	0	0	0	0	0	0	2
North Macedonia	0	0	1	0	0	1	0	0	1	0	0	0	3
Serbia	0	0	1	0	0	1	0	0	0	0	0	0	2
Türkiye	0	0	0	0	0	0	0	0	0	0	1	0	1
UK	2	0	0	2	0	0	0	0	0	0	0	0	4

For the following countries, no recent prevalence estimates in the general population (including proxy populations) were available: Bulgaria, Cyprus, Czechia, Estonia, Finland, Germany, Latvia, Lithuania, Luxembourg, Malta, Slovakia, Iceland, Liechtenstein, Norway, Switzerland, Albania, Bosnia and Herzegovina, Georgia, Kosovo, Moldova, Montenegro, and Ukraine.

Figure 1. Number of identified prevalence estimates in the general population, including proxy populations per country; combined for all four STIs

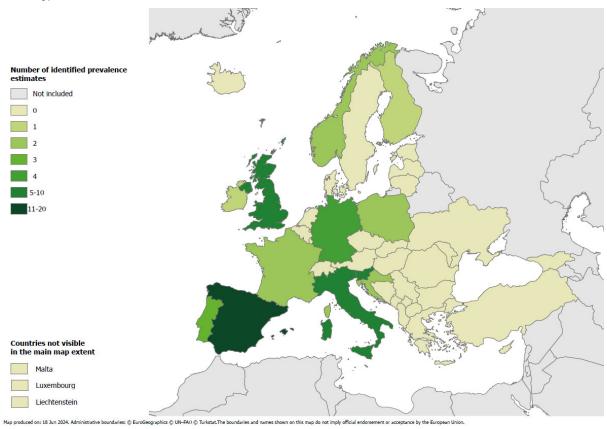


Table 4. Number of identified prevalence estimates in young people, including proxy populations

	CI	hlamyd	lia	Go	norrho	ea	Trichomoniasis			Syphilis			Syphilis			
Country	Representative	Antenatal care	Proxy (other)	Total												
Croatia	2	0	0	0	0	0	0	0	0	0	0	0	2			
Finland	0	0	1	0	0	0	0	0	0	0	0	0	1			
France	0	1	0	0	1	0	0	0	0	0	0	0	2			
Germany	2	0	0	2	0	0	0	0	0	0	0	0	4			
Ireland	0	1	0	0	0	0	0	0	0	0	0	0	1			
Italy	0	0	4	0	0	2	0	0	0	0	0	0	6			
Poland	2	0	0	0	0	0	0	0	0	0	0	0	2			
Portugal	0	0	1	0	0	1	0	0	1	0	0	0	3			
Slovenia	2	0	0	2	0	0	2	0	0	0	0	0	6			
Spain	4	4	2	2	3	0	2	2	0	0	1	0	20			
Norway	0	0	2	0	0	0	0	0	0	0	0	0	2			
UK	2	0	2	2	0	2	0	0	0	0	0	0	8			

For the following countries, no recent prevalence estimates in young people (including proxy populations) were available: Austria, Belgium, Bulgaria, Cyprus, Czechia, Denmark, Estonia, Greece, Hungary, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Romania, Slovakia, Sweden, Iceland, Liechtenstein, Switzerland, Albania, Bosnia and Herzegovina, Georgia, Kosovo, Moldova, Montenegro, North Macedonia, Serbia, Türkiye, and Ukraine.

Figure 2. Number of identified prevalence estimates in young people, including proxy populations, per country; combined for all four STIs

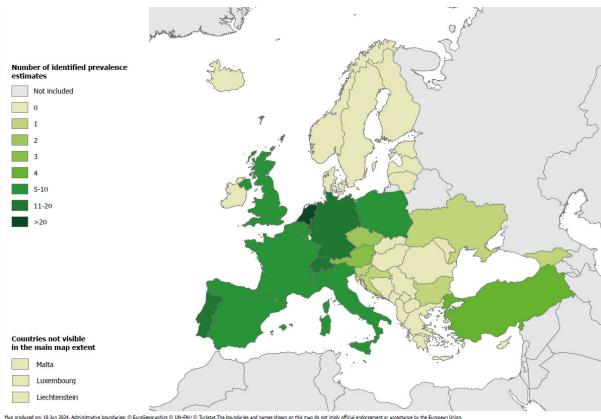


Table 5. Number of identified prevalence estimates in MSM, sex workers and PWID

	Chlamydia			Go	Gonorrhoea			Trichomoniasis			Syphilis		
Country	MSM	Sex workers	PWID	MSM	Sex workers	PWID	MSM	Sex workers	PWID	MSM	Sex workers	DWID	Total
Austria	1	0	0	1	0	0	0	0	0	1	0	0	3
Belgium	1	2	0	1	2	0	0	1	0	1	0	0	8
Bulgaria	0	0	0	0	0	0	0	0	0	1	0	0	1
Croatia	0	0	0	0	0	0	0	0	0	1	0	0	1
Czechia	0	0	0	0	0	0	0	0	0	0	1	1	2
France	3	0	0	2	0	0	0	0	0	2	0	0	7
Germany	4	0	0	4	0	0	2	0	0	2	0	0	12
Italy	2	0	0	2	0	0	0	0	0	2	1	0	7
Netherlands	4	4	0	3	4	0	0	0	0	3	4	0	22
Poland	2	0	0	2	0	0	0	0	0	2	0	0	6
Portugal	1	3	0	1	3	0	0	0	0	0	3	1	12
Slovenia	0	0	0	0	0	0	0	0	0	1	0	0	1
Spain	3	1	0	3	1	0	0	0	0	2	0	0	10
Switzerland	2	2	0	3	2	0	1	1	0	3	2	0	16
Georgia	0	0	0	0	0	0	0	0	0	1	0	0	1
Türkiye	1	0	0	1	0	0	0	0	0	2	0	0	4
Ukraine	0	0	0	0	0	0	0	0	0	1	0	0	1
UK	2	0	0	2	0	0	0	0	0	1	0	0	5

For the following countries, no recent prevalence estimates in MSM, sex workers and PWID were available: Cyprus, Denmark, Estonia, Finland, Greece, Hungary, Ireland, Latvia, Lithuania, Luxembourg, Malta, Romania, Slovakia, Sweden, Iceland, Liechtenstein, Norway, Albania, Bosnia and Herzegovina, Kosovo, Moldova, Montenegro, North Macedonia, and Serbia.

Figure 3. Number of identified prevalence estimates in MSM, sex workers and PWID per country; combined for all four STIs

3.2 Study characteristics

Chlamydia

General population

Women: for the female general population, including proxy populations, 23 studies reported CT prevalence estimates, which enrolled a total of 37 114 women. Among these 23 studies, five employed population-based probability sampling (n=4 544), and six enrolled women in antenatal care using convenience sampling (n=26 179). Thirteen studies were conducted among other female proxy populations using convenience sampling, including healthy women attending routine gynaecological check-ups, cervical and/or breast cancer screening, women attending general practitioners (GP), and female military personnel (n=6 391). Of the 23 studies, eight were conducted in central and eastern Europe, one in northern Europe, five in southern Europe, and nine in western Europe. The sampling dates ranged from 2011 to 2019.

Young women: for women aged <25 years, 21 studies reported CT prevalence estimates, enrolling a total of 17 714 young women. Among these, two studies employed population-based probability sampling, two applied random probability sampling in a panel database and in the community, and three were conducted among a representative convenience sample (n = 2 953). Six studies enrolled young women in antenatal care using convenience sampling (n = 4 264). Eight studies were conducted among other young female proxy populations using convenience, cluster or targeted sampling, including female students, HPV-vaccinated young women (randomised trial), young women attending routine gynaecological check-ups, and young female emergency room attendees (n=10 497). Of the 21 studies, three were conducted in central and eastern Europe, two in northern Europe, 11 in southern Europe, and five in western Europe. The sampling dates ranged from 2010 to 2022.

Men: for the male general population, including proxy populations, eleven studies reported CT prevalence estimates which enrolled a total of 5 343 men. Among these eleven studies, five employed population-based probability sampling (n=3 176), and six enrolled male proxy populations using convenience sampling, including male patients attending GPs, male military personnel, and male partners of women in antenatal care (n=2 167). Of the eleven studies, four were conducted in central and eastern Europe, one in northern Europe, and six in western Europe. The sampling dates ranged from 2011 to 2019.

Young men: for men aged <25 years, 11 studies reported CT prevalence estimates, enrolling a total of 3 573 young men. Among these, two studies employed population-based probability sampling, two studies applied random probability sampling in a panel database and in the community, and three studies were conducted among a representative convenience sample (n=1 969). Four studies were conducted among young male proxy populations using convenience or cluster sampling, including male students and young male emergency room attendees (n=1 604). Of the 11 studies, three were conducted in central and eastern Europe, one in northern Europe, four in southern Europe, and three in western Europe. The sampling dates ranged from 2011 to 2022.

Populations of special interest

MSM: for MSM, 28 studies reported CT prevalence estimates, enrolling a total of 367 603 individuals. Of those, three studies only included HIV-positive MSM, five only MSM taking PrEP and five only MSM engaging in sexual behaviour defined by the study authors as 'high-risk'. Almost all studies were conducted in STI clinics (25), one study recruited participants via a dating app/social media, one recruited participants via an online sexual health service and in one study participant recruitment was unclear. Of the 28 studies, three were conducted in central and eastern Europe, one in northern Europe, six in southern Europe, 17 in western Europe and one in Türkiye. The sampling dates ranged from 2015 to 2022.

Sex workers: Nine studies reported CT prevalence estimates for sex workers, with seven studies reporting estimates for female sex workers (n=3 878), five reporting estimates for male and/or transgender sex workers (n=272) and one reporting prevalence for mixed-gender sex workers (n=23). Of the nine studies, two were conducted in southern Europe, and seven in western Europe. The sampling dates ranged from 2014 to 2019.

PWID: No study was identified that reported a CT prevalence estimate for PWID.

Gonorrhoea

General population

Women: for the female general population, including proxy populations, eleven studies enrolling a total of 21 918 women, reported NG prevalence estimates. Among these eleven studies, three employed population-based probability sampling (n=3 668), and three enrolled women in antenatal care using convenience sampling (n=13 239). Five studies were conducted among other female proxy populations using convenience sampling, including healthy women attending routine gynaecological check-ups, cervical and/or breast cancer screening, and female students (n = 5 011). Of the eleven studies, two were conducted in central and eastern Europe, three in southern Europe, and seven in western Europe. The sampling dates ranged from 2011 to 2017.

Young women: for women aged <25 years, 12 studies reported NG prevalence estimates, enrolling a total of 5 354 young women. Among these, two studies employed population-based probability sampling (n=1 099) and two were conducted among a representative convenience sample (n=578). Five studies enrolled young women in antenatal care using convenience sampling (n=1 577). Three studies were conducted among other young female proxy populations using convenience or cluster sampling, including female students. Of the twelve studies, seven were conducted in southern Europe, and three in western Europe. The sampling dates ranged from 2010 to 2021.

Men: five studies reported NG prevalence estimates for the male general population, including proxy populations, enrolling a total of 3 128 men. Among these five studies, three employed population-based probability sampling (n=2 455), and two enrolled male partners of women in antenatal care using convenience sampling (n=673). Of the five studies, one was conducted in central and eastern Europe, one in northern Europe, and three in western Europe. The sampling dates ranged from 2011 to 2017.

Young men: six studies reported NG prevalence estimates for men aged <25 years, enrolling a total of 2 231 young men. Among these, two studies employed population-based probability sampling (n=916), three were conducted among a convenience sample (n=1 061), and one used cluster sampling (n=236) to include male students. Two studies were conducted in southern Europe, one in central and eastern Europe, and three in western Europe. The sampling dates ranged from 2011 to 2022.

Populations of special interest

MSM: for MSM, 27 studies reported NG prevalence estimates, enrolling a total of 324 264 individuals. Of those, three studies only included HIV-positive MSM, five only MSM taking PrEP and five only MSM engaging in sexual behaviour defined by the study authors as 'high-risk'. Almost all studies were conducted in STI clinics (24), one study recruited participants via a dating app/social media, one recruited participants via an online sexual health service and in one study participant recruitment was unclear. Of the 27 studies, three were conducted in central and eastern Europe, one in northern Europe, six in southern Europe, 16 in western Europe and one in Türkiye. The sampling dates ranged from 2015 to 2022.

Sex workers: nine studies reported NG prevalence estimates for sex workers, with seven studies reporting estimates for female sex workers (n=3 878), five reporting estimates for male and/or transgender sex workers (n=258) and one reporting prevalence for mixed-gender sex workers (n=23). Of the nine studies, two were conducted in southern Europe, and seven in western Europe. The sampling dates ranged from 2014 to 2019.

PWID: No study was identified that reported an NG prevalence estimate for PWID.

Trichomoniasis

General population

Women: nine studies reported TV prevalence estimates for the female general population, including proxy populations, which enrolled a total of 31 728 women. Among these nine studies, one employed population-based probability sampling (n=593), and two enrolled women in antenatal care using convenience sampling (n=4 179). Six studies were conducted among other female proxy populations using convenience sampling, including healthy women attending routine gynaecological check-ups, cervical and/or breast cancer screening, or an outpatient clinic, as well as female students (n=26 956). Of the nine studies, two were conducted in central and eastern Europe, five in southern Europe and two in western Europe. The sampling dates ranged from 2010 to 2017.

Young women: five studies, enrolling a total of 1 823 young women, reported a TV prevalence estimate for women aged <25 years. Among these studies, one employed population-based probability sampling (n = 107). Two studies enrolled women in antenatal care using convenience sampling (n=735) and two were conducted among other female proxy populations, such as female students using convenience sampling (n=536) and women recruited in a community setting (n = 445). Of the five studies, one was conducted in central and eastern Europe, and four in southern Europe. The sampling dates ranged from 2013 to 2022.

Men: Three studies reported a TV prevalence estimate for the male general population, including proxy populations, which enrolled a total of 1 103 men. One study employed population-based probability sampling (n=430), and two enrolled male partners of women in antenatal care as proxy populations, using convenience sampling (n=673). The studies were conducted in northern Europe, central and eastern Europe, and western Europe. The sampling dates ranged from 2011 to 2017.

Young men: two studies reported a TV prevalence estimate for men aged <25 years, enrolling a total of 242 young men. One study employed population-based probability sampling (n=76), and the other one enrolled men in community settings (n=166). The two studies were conducted in central and eastern Europe and southern Europe. The sampling dates ranged from 2017 to 2022.

Populations of special interest

MSM: four studies reported TV prevalence estimates for MSM, enrolling a total of 4 131 individuals. Of those, one study only included HIV-positive MSM, and two only included MSM engaging in sexual behaviour defined by the study authors as 'high risk'. All four studies were conducted in STI clinics. Of the four studies, three were conducted in western Europe and one in Türkiye. The sampling dates ranged from 2016 to 2020.

Sex workers: two studies reported TV prevalence estimates for sex workers, both reporting estimates for female sex workers (n=786). Both studies were conducted in western Europe. The sampling dates ranged from 2015 to 2017.

PWID: No study was identified that reported a TV prevalence estimate for PWID.

Syphilis

General population

Women: eight studies reported TP prevalence estimates for the female general population, including proxy populations, which enrolled a total of 249 945 women. Of these studies, seven were conducted among women in antenatal care using convenience sampling (n=249 600). One study was conducted among healthy women attending routine gynaecological check-ups/screening (n=345). Of the eight studies, three were conducted in central and eastern Europe, three in southern Europe, one in western Europe and one in Türkiye. The sampling dates ranged from 2010 to 2021.

Young women: one study reported a TP prevalence estimate for women aged <25 years, enrolling a total of n=596 young women. It was conducted among young women in antenatal care, using convenience sampling. The study was conducted in southern Europe and sampled between 2011 to 2014.

Men: No studies reporting TP prevalence data among men in the general population and proxy populations were identified.

Young men: No study was identified that reported a TP prevalence estimate for men aged <25 years.

Populations of special interest

MSM: for MSM, 27 studies reported TP prevalence estimates, enrolling a total of 315 257 individuals. Of those, four studies only included HIV-positive MSM, five only MSM taking PrEP and four only MSM engaging in sexual behaviour defined by the study authors as 'high-risk'. Almost all studies were conducted in STI clinics (25), one study recruited participants via a dating app/social media and in one study participant recruitment was unclear. Of the 27 studies, six were conducted in central and eastern Europe, one in northern Europe, five in southern Europe, 13 in western Europe and two in Türkiye. The sampling dates ranged from 2015 to 2022.

Sex workers: eight studies reported TP prevalence estimates for sex workers, with seven studies reporting estimates for female sex workers (n=3 422), five studies reporting estimates for male and/or transgender sex workers (n=125) and one study reporting prevalence for mixed-gender sex workers (n=23). Of the eight studies, one was conducted in central and eastern Europe, two in southern Europe, and five in western Europe. The sampling dates ranged from 2003 to 2020.

PWID: Two studies reported TP prevalence estimates for PWID, enrolling a total of 483 male and female individuals. Both studies were conducted in central and eastern Europe. The sampling dates ranged from 2003 to 2018.

3.3 Chlamydia prevalence estimates

Table 6 below summarises the pooled chlamydia prevalence estimates for all study populations. Details of the studies included and the meta-analyses are provided in the sub-chapters below.

Population	Sub-group	No. studies	No. individuals	Pooled estimate [%]	95%-CI lower	95%-CI upper	I ²
Women	combined ¹	23	37 114	2.76	1.65	3.87	98.92
Women	representative	5	4 544	1.99	0.78	3.21	86.78
Women	proxy (ANC)	6	26 179	1.83	0.99	2.67	95.93
Women	proxy (other)	12	6 391	3.79	1.64	5.94	98.28
Men	combined ¹	11	5 343	2.64	0.61	4.67	97.23
Men	representative	5	3 176	1.11	0.49	1.72	51.34
Men	proxy (other)	6	2 167	4.05	0.00	8.19	97.56
Young women	combined ¹	21	17 714	5.54	4.59	6.50	85.68
Young women	representative	7	2 953	4.44	3.21	5.68	58.00
Young women	proxy (ANC)	6	4 264	8.19	5.40	10.98	86.42
Young women	proxy (other)	8	10 497	5.16	3.69	6.63	88.96
Young men	combined ¹	11	3 573	3.32	2.04	4.59	80.69
Young men	representative	7	1 969	2.91	1.44	4.38	73.68
Young men	proxy (other)	4	1 604	4.14	1.53	6.74	84.76
MSM	visiting STI clinics	14	362 292	9.72	8.27	11.16	99.30
MSM	"high risk"	5	2 326	15.35	9.62	21.08	92.98
MSM	HIV	3	693	6.08	0.75	11.41	91.18
MSM	PrEP	5	2 071	9.57	7.11	12.02	70.45
Sex workers	female	7	3 878	5.50	4.31	6.69	54.15
Sex workers	male+trans	5	272	6.04	1.65	10.44	38.89

ANC: antenatal care; HIV: human immunodeficiency virus; PrEP: pre-exposure prophylaxis; STI: sexually transmitted infection. 1 prevalence estimates combining both, representative studies and studies in proxy populations.

General population

Chlamydia in women

Overall, the current burden of CT among women in the European region is estimated to be 2.76% (95% CI 1.65–3.87, see Table 7 and Figure 4). Based on studies among women representative for the general population only, prevalence is estimated to be 1.99% (95% CI 0.78–3.21, see Figure 5), with the lowest prevalence reported in Belgium (1.29%; 95% CI 0.23–2.35) and the highest in the Netherlands (5.60%; 95% CI 3.37–7.83). Among women in antenatal care, CT prevalence is estimated to be 1.83% (95% CI 0.99–2.67, see Figure 6) and ranges from 0.58% (95% CI 0.15–1.01) in Denmark to 3.40% (95% CI 2.76–4.04) in Italy. In other female proxy populations, including healthy women attending routine gynaecological check-ups, cervical and/or breast cancer screening, women attending GPs and healthcare website users, and female military personnel, pooled prevalence of CT is estimated to be 3.79% (95% CI 1.64–5.94, see Figure 7).

Table 7. Prevalence estimates for chlamydia in the general female population

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age ¹	Setting	Specimen	Test method	No. tested	PE (%)	95% CI	RoB
EU/EFTA		oturt	Circ										
Representat	tive												
Netherlands	Heijne 2019 [21]	11/2016	01/2017	probability	representative	18-34 ³	register	urine or genital	NAAT	410	5.60	3.38-7.84	high
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representative	18-49 ³	register	urine	NAAT	635	1.60	0.61-2.54	low
Belgium	Fischer 2021_CT1 [23]	01/2019	12/2020	probability	representative	40.0	register	urine	NAAT	422	1.32	0.29-2.55	low
Belgium	Fischer 2021_CT2 [23]	01/2019	12/2020	probability	representative	42.0	register	urine	NAAT	412	1.29	0.16-2.27	low
Proxy ANC													
Italy	Foschi 2016 [24]	01/2011	05/2014	convenience	routine gynaecological check-up and ANC	36.1 ²	clinical	genital	NAAT	3 072	3.40	2.75-4.02	high
France	Peuchant 2015 [25]	01/2011	06/2011	convenience	ANC	30.0	clinical	genital	NAAT	1 004	2.50	1.53-3.45	medi um
Croatia	Ljubin-Sternak 2017 [26]	03/2014	02/2015	convenience	routine gynaecological check-up and ANC	30.9 ²	outpatient	genital	NAAT	8665	1.90	1.62-2.19	high
Netherlands	Op de Coul 2021 [27]	NR/2012	NR/2016	convenience	ANC	27.0	clinical	genital	NAAT	548	1.80	0.70-2.95	high
Spain	Piñeiro 2016 [28]	01/2011	12/2014	convenience	ANC	33.0	clinical	urine	NAAT	11 687	1.00	0.82-1.18	high
Denmark	Skafte-Holm 2023 [29]	01/2015	01/2019	convenience	ANC	30.3	clinical	genital	NAAT	1 203	0.58	0.15-1.01	medi um
Proxy other													
France	Berhonde 2015 [30]	01/2013	06/2014	convenience	pre-abortion consultation	21.0	clinical	genital	NAAT	2 824	11.0 0	9.86-12.17	high
Poland	Frej-Madrzak 2018 [31]	NR	NR	convenience	routine gynaecological check-up	25.0	outpatient	genital	NAAT	100	4.00	0.16-7.84	high
Poland	Frej-Madrzak 2020 [32]	01/2016	NR/NR	convenience	routine gynaecological check-up	24.9 ²	clinical	genital	NAAT	315	3.20	1.24–5.11	high
Slovakia	Babinská 2017 [33]	01/2011	12/2011	convenience	GP patients	33.5 ^{2, 4}	outpatient	urine	NAAT	172	2.90	0.40-5.42	high
Greece	Parthenis 2018 [34]	10/2015	10/2016	convenience	routine cervical screening	33.2 ²	clinical	genital	NAAT	345	1.45	0.19-2.71	high

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age1	Setting	Specimen	Test method	No. tested	РЕ (%)	95% CI	RoB
Italy	Camporiondo 2016 [35]	01/2013	12/2013	convenience	breast cancer screening	49.0	clinical	genital	NAAT	309	0.00	0.00-0.61	high
Poland	Korzeniewski 2019 [36]	10/2016	11/2016	convenience	military personnel	40.5 ^{2, 5} 38.0 ^{2,6}	community	urine	NAAT	16	0.00	0.00-10.97	high
Italy	Seraceni 2016 [37]	01/2009	12/2014	convenience	cervical cancer screening	43.0 ²	outpatient	genital	NAAT	921	0.00	0.00-0.20	high
France	Duron 2018 [38]	NR/2014	NR/2015	probability	military personnel	18-57 ³	register	genital	NAAT	141	7.10	2.86-11.33	high
Ireland	Hassan 2016 [39]	07/2014	01/2015	convenience	cervical cancer screening	33.0	outpatient	genital	NR	236	2.40	0.53-4.55	high
Non-EU/EF	ТА												
Representa	tive												
UK	Sonnenberg 2013 [40]	09/2010	08/2012	probability	representative	16-44 ³	register	urine	NAAT	2 665	1.50	1.04-1.96	low
Proxy other													
Serbia	Jadranin 2019 [41]	01/2016	06/2016	convenience	military personnel	30.9 ⁴	community	genital	NAAT	50	14.00	4.38-23.62	
North Macedonia	Albig 2023 [42]	NR/2014	NR/2018	convenience	gynaecology and obstetrics department	NR	clinical	NR	NAAT	962	4.90	3.52-6.25	

ANC: antenatal care; GP: general practitioner; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; RoB: risk of bias.

1 median, unless indicated otherwise

2 mean

3 range

4 comprises men and women (not reported separately)

5 positive individuals only

6 negative individuals only

Figure 4. Pooled estimates for chlamydia in women, total

Meta-analysis: CT-Women	Sampling date	Country	Ν		Weight	PE % [95% CI]
Peuchant 2015	2011	FR	1004	HEH	4.92%	2.50 [1.54, 3.46]
Seraceni 2016	2011	IT	921	•	5.11%	0.00 [0.00, 0.15]
Babinská 2017	2011	SK	172	⊢_ ∎(4.05%	2.90 [0.39, 5.41]
Foschi 2016	2012	IT	3072	•	5.03%	3.40 [2.76, 4.04]
Piñeiro 2016	2013	ES	11687		5.11%	1.00 [0.82, 1.18]
Berhonde 2015	2013	FR	2824	H B H	4.84%	11.00 [9.85, 12.15]
Camporiondo 2016	2013	IT	309	•	5.07%	0.00 [0.00, 0.45]
Duron 2018	2014	FR	141	⊢ ∎I	2.92%	7.10 [2.86, 11.34]
Ljubin-Sternak 2017	2014	HR	8665		5.10%	1.90 [1.61, 2.19]
Hassan 2016	2014	IE	236		4.38%	2.40 [0.39, 4.41]
Op de Coul 2021	2014	NL	548	H B H	4.86%	1.80 [0.68, 2.92]
Parthenis 2018	2016	GR	345	- - -	4.80%	1.45 [0.19, 2.71]
Heijne 2019	2016	NL	410	⊨∎→	4.24%	5.60 [3.37, 7.83]
Korzeniewski 2019	2016	PL	16	•I	1.39%	0.00 [0.00, 8.03]
Skafte-Holm 2023	2017	DK	1203	-	5.07%	0.58 [0.15, 1.01]
Klavs 2022	2017	SI	635	H E H	4.92%	1.60 [0.63, 2.57]
Fischer 2021_CT1	2019	BE	422		4.86%	1.32 [0.19, 2.45]
Fischer 2021_CT2	2019	BE	412	1 - ■ -1	4.89%	1.29 [0.23, 2.35]
Frej-Madrzak 2018	NR	PL	100		3.17%	4.00 [0.16, 7.84]
Frej-Madrzak 2020	NR	PL	315	⊢∎⊣	4.42%	3.20 [1.26, 5.14]
Sonnenberg 2013	2011	UK	2665		5.07%	1.50 [1.04, 1.96]
Albig 2023	2016	MK	962	H B -1	4.75%	4.90 [3.54, 6.26]
Jadranin 2019	2016	RS	50	<u>ا</u>	→ 1.05%	14.00 [4.38, 23.62]
l ² = 98.9%			37114	•	100%	2.76 [1.65, 3.87]
			C	.00 5.00 15.00	25.00	

Pooled prevalence estimate

Figure 5. Pooled estimates for chlamydia in women, representative of the general population

Meta-analysis: CT-Women representative	Sampling _{Countr} date	Y N				Weight	PE % [95% CI]			
Heijne 2019	2016 NL	410				── 13.49%	5.60 [3.37, 7.83]			
Klavs 2022	2017 SI	635	⊢∎⊣			21.38%	1.60 [0.63, 2.57]			
Fischer 2021_CT1	2019 BE	422	⊢_∎			20.38%	1.32 [0.19, 2.45]			
Fischer 2021_CT2	2019 BE	412	⊢_∎_ _i			20.84%	1.29 [0.23, 2.35]			
Sonnenberg 2013	2011 UK	2665	⊦∎⊣			23.90%	1.50 [1.04, 1.96]			
$l^2 = 86.8\%$		4544	-	-		100%	1.99 [0.78, 3.21]			
		0	00 2.00	ا 4.00	l 6.00	8.00				
	Pooled prevalence estimate									

Figure 6. Pooled estimates for chlamydia in women in antenatal care (proxy population)

Meta-analysis: CT-Women proxy (ANC)	Sampling _C date	ountry	Ν				,	Weight	PE % [95% CI]
Peuchant 2015	2011	FR	1004			•		14.93%	2.50 [1.54, 3.46]
Foschi 2016	2012	IT	3072			⊢-■		16.78%	3.40 [2.76, 4.04]
Piñeiro 2016	2013	ES	11687	H∰H				18.43%	1.00 [0.82, 1.18]
Ljubin-Sternak 2017	2014	HR	8665		⊦∎⊣			18.19%	1.90 [1.61, 2.19]
Op de Coul 2021	2014	NL	548	ŀ	•	1		13.96%	1.80 [0.68, 2.92]
Skafte-Holm 2023	2017	DK	1203	⊢∎1				17.72%	0.58 [0.15, 1.01]
$l^2 = 95.9\%$			26179	-		B		100%	1.83 [0.99, 2.67]
					- 1	1			
			0.	00 1.00	2.00	3.00	4.00	5.00	
	Pooled prevalence estimate								

Figure 7. Pooled estimates for chlamydia in women, other proxy populations

Meta-analysis: CT-Women proxy (other)	Sampling _C date	Country	Ν			Weight	PE % [95% Cl]
Seraceni 2016	2011	IT	921	•		10.17%	0.00 [0.00, 0.15]
Babinská 2017	2011	SK	172			8.94%	2.90 [0.39, 5.41]
Berhonde 2015	2013	FR	2824		H H	9.88%	11.00 [9.85, 12.15]
Camporiondo 2016	2013	IT	309			10.13%	0.00 [0.00, 0.45]
Duron 2018	2014	FR	141	·		7.29%	7.10 [2.86, 11.34]
Hassan 2016	2014	IE	236	⊢∎⊣		9.35%	2.40 [0.39, 4.41]
Parthenis 2018	2016	GR	345	⊢ ∎-1		9.83%	1.45 [0.19, 2.71]
Korzeniewski 2019	2016	PL	16			4.20%	0.00 [0.00, 8.03]
Frej-Madrzak 2018	NR	PL	100			7.68%	4.00 [0.16, 7.84]
Frej-Madrzak 2020	NR	PL	315	⊢∎⊣		9.40%	3.20 [1.26, 5.14]
Albig 2023	2016	МК	962	H∎H		9.78%	4.90 [3.54, 6.26]
Jadranin 2019	2016	RS	50	-		3.35%	14.00 [4.38, 23.62]
$l^2 = 98.3\%$			6391	•		100%	3.79 [1.64, 5.94]
					1 1 1		
			(0.00 5.00	15.00	25.00	
				Pooled p	revalence estim	ate	

Chlamydia in men

Overall, the current burden of CT among men in the European region is estimated to be 2.64% (95% CI 0.61–4.67, see Table 8 and Figure 8Figure). In men representative of the general population only, CT prevalence is estimated to be 1.11% (95% CI 0.49–1.72, see Figure), with the lowest prevalence reported in Slovenia (0.40%; 95% CI 0.00–1.01) and the highest in Belgium (2.25%; 95% CI 0.69–3.81). Based on studies among male proxy populations, including male patients attending GPs, military personnel, and partners of women in antenatal care, pooled CT prevalence is estimated to be 4.05% (95% CI 0.00–8.19, see Figure 10Figure).

Table 8. Prevalence estimates for chlamydia in the general male population

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age1	Setting	Specimen	Test method	N tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Representati	ive												
Belgium	Fischer 2021_CT1 [23]	01/2019	12/2020	probability	representative	41.0	register	urine	NAAT	348	1.75	0.36-3.09	low
Belgium	Fischer 2021_CT2 [23]	01/2019	12/2020	probability	representative	44.0	register	urine	NAAT	351	2.25	0.72-3.84	low
Netherlands	Heijne 2019 [21]	11/2016	01/2017	probability	representative	18-34 ³	register	urine	NAAT	140	1.10	0.00-3.39	high
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representative	18-49 ³	register	urine	NAAT	452	0.40	0.00-1.05	low
Proxy													
Slovakia	Babinská 2017 [33]	01/2011	12/2011	convenience	GP patients	33.5 ^{2, 4}	outpatient	urine	NAAT	167	2.40	0.08-4.71	high
Netherlands	Op de Coul 2021 [27]	NR/2012	NR/2016	convenience	partners of women in ANC	29.0	clinical	urine	NAAT	425	2.20	0.75-3.49	high
Estonia	Tjagur 2021 [43]	01/2010	12/2012	convenience	partners of women in ANC	31.8	clinical	urine	NAAT	248	1.60	0.05-3.18	medium
Poland	Korzeniewski 2019 [36]	10/2016	11/2016	convenience	military personnel	40.5 ^{2, 4, 5} 38.0 ^{2, 4, 6}	community	urine	NAAT	237	0.84	0.00-2.01	high
France	Duron 2018 [38]	NR/2014	NR/2015	probability	military	18-57 ³	register	urine	NAAT	784	3.00	1.86-4.27	high
Non-EU/EFT													
Representati	ive												
UK	Sonnenberg 2013 [40]	09/2010	08/2012	probability	representative	16-44 ³	register	urine	NAAT	1 885	1.10	0.64-1.59	low
Proxy													
Serbia	Jadranin 2019 [41]	01/2016	06/2016	convenience	military personnel	30.9⁴	community	genital	NAAT	306	15.70	11.61–19.76	medium

ANC: antenatal care; GP: general practitioner; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; RoB: risk of bias.

1 median, unless indicated otherwise

2 mean 3: range

4 comprises men and women (not reported separately)

5: positive individuals only

6 negative individuals only.

Figure 8. Pooled estimates for chlamydia in men, total

Meta-analysis: CT-Men	Sampling date	Country	N				Weight	PE % [95% CI]
Tjagur 2021	2011	EE	248	┝╼┙			9.22%	1.60 [0.03, 3.17]
Babinská 2017	2011	SK	167				8.66%	2.40 [0.08, 4.72]
Duron 2018	2014	FR	784	⊢∎⊣			9.43%	3.00 [1.79, 4.21]
Op de Coul 2021	2014	NL	425	⊢∎⊣			9.34%	2.20 [0.83, 3.57]
Heijne 2019	2016	NL	140	i∎-i			8.94%	1.10 [0.00, 3.07]
Korzeniewski 2019	2016	PL	237	₩			9.45%	0.84 [0.00, 2.01]
Klavs 2022	2017	SI	452				9.67%	0.40 [0.00, 1.01]
Fischer 2021_CT1	2019	BE	348	⊨∎⊣			9.34%	1.75 [0.38, 3.12]
Fischer 2021_CT2	2019	BE	351	⊢∎→			9.23%	2.25 [0.69, 3.81]
Sonnenberg 2013	2011	UK	1885	•			9.70%	1.10 [0.63, 1.57]
Jadranin 2019	2016	RS	306		—		⊣7.01% 1	5.70 [11.63, 19.77]
l ² = 97.2%			5343	-			100%	2.64 [0.61, 4.67]
							Г	
			0	.00 5.00	10.00 1	5.00 2	0.00	
				Pooled pre	evalence e	estimate		

Figure 9. Pooled estimates for chlamydia in men, representative of the general population

Meta-analysis: CT-Men representative	Sampling _{Cou} date	intry N				Weight	PE % [95% CI]
Heijne 2019	2016 N	IL 140				8.02%	1.10 [0.00, 3.07]
Klavs 2022	2017 \$	61 452				31.08%	0.40 [0.00, 1.01]
Fischer 2021_CT1	2019 E	E 348	·			13.92%	1.75 [0.38, 3.12]
Fischer 2021_CT2	2019 E	E 351				⊣ 11.51%	2.25 [0.69, 3.81]
Sonnenberg 2013	2011 L	IK 1885		-		35.46%	1.10 [0.63, 1.57]
$l^2 = 51.3\%$		3176	•			100%	1.11 [0.49, 1.72]
			i T	1	1		
		C	0.00 1.00 Pooled p	2.00 revalence	3.00 estimat	4.00 e	

Figure 10. Pooled estimates for chlamydia in men, other proxy populations

Meta-analysis: CT-Men proxy (other)	Sampling date	Country	N	Weight PE % [95% CI]
Tjagur 2021	2011	EE	248	
Babinská 2017	2011	SK	167	16.54% 2.40 [0.08, 4.72]
Duron 2018	2014	FR	784	⊢∎⊣ 17.19% 3.00 [1.79, 4.21]
Op de Coul 2021	2014	NL	425	⊢■→ 17.12% 2.20 [0.83, 3.57]
Korzeniewski 2019	2016	PL	237	■ 17.21% 0.84 [0.00, 2.01]
Jadranin 2019	2016	RS	306	⊷ 14.92% 15.70 [11.63, 19.77]
$l^2 = 97.6\%$			2167	100% 4.05 [0.00, 8.19]
			0	0.00 5.00 10.00 15.00 20.00

Pooled prevalence estimate

Chlamydia in young women

In young women aged 15 to 24 years, the overall CT prevalence is estimated to be 5.54% (95% CI 4.59–6.50, see Table and Figure). When considering only studies among young women representative of the general population of young people, pooled prevalence is estimated to be 4.44% (95% CI 3.21–5.68, see Figure 12), with the lowest prevalence reported in Croatia (2.90%; 95% CI 0.81–4.99) and the highest in Germany (7.50%; 95% CI 3.02–11.98). Among young women in antenatal care, pooled prevalence is estimated to be 8.19% (95% CI 5.40–10.98, see Figure), and among other young female proxy populations, 5.16% (95% CI 3.69–6.63, see Figure Figure).

Chlamydia in young men

Among young men, overall CT prevalence is estimated to be 3.32% (95% CI 2.04–4.59, see Table and Figure). When considering only studies among young men representative of the general population of young people, pooled prevalence is estimated to be 2.91% (95% CI 1.44–4.38, see Figure), with the lowest prevalence reported in Croatia (1.00%; 95% CI 0.00–2.36) and the highest in Germany (8.20%; 95% CI 3.52–12.88). Among other young male proxy populations, pooled prevalence is estimated to be 4.14% (95% CI 1.53–6.74, see Figure 1).

Table 9. Prevalence estimates for chlamydia in young women

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age1	Setting	Specimen	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Representat	ive												
Germany	Skaletz- Rorowski 2021 [44]	12/2016	07/2018	convenience	representative	23.0 ⁴	community	any-site (AR/UG/PH)	NAAT	133	7.50	3.04-12.00	high
Spain	Reyes-Lacalle 2022 [45]	01/2018	11/2019	convenience	representative	21.1 ⁵ 20.1 ²	community	genital	NAAT	391	5.60	3.34–7.91	high
Spain	Espies 2023 [46]	09/2021	05/2022	convenience	representative	20.0 ^{2, 4}	community	urine	NAAT	445	6.90	4.60-9.33	high
Poland	Czerwinski 2018 [47]	09/2012	06/2015	probability	representative	18.7 ^{2, 4}	community	urine	NAAT	635	4.10	2.55-5.64	high
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representative	18-24 ³	register	urine	NAAT	112	3.60	0.13-7.01	low
Croatia	Bozicevic 2023 [48]	11/2021	01/2022	probability, internet- based	representative	21.7 ^{2, 4}	panel database	urine	NAAT	245	2.90	0.77–4.94	medium
Proxy ANC													
Spain	Dorado Criado 2021 [49]	11/2018	06/2019	convenience	ANC	22.0	clinical	urine	NAAT	136	18.40	11.87–24.89	high
France	Peuchant 2015 [25]	01/2011	06/2011	convenience	ANC	18-24 ³	clinical	genital	NAAT	165	7.90	3.77-11.99	high
Spain	Muñoz Santa 2022 [50]	01/2019	10/2020	convenience	ANC	< 25.0	NR	genital	NAAT	599	7.20	5.11-9.25	high
Spain	Piñeiro 2016 [28]	01/2011	12/2014	convenience	ANC	< 25.0	clinical	urine	NAAT	596	6.40	4.41-8.34	high
Ireland	O'Higgins 2017 [51]	12/2011	12/2013	convenience	ANC	21.8 ²	clinical	genital	NAAT	2 687	5.60	4.71-6.45	high
Spain	Lopez-Corbeto 2021 [52]	01/2016	06/2016	NR	ANC	< 25.0	clinical	urine	NAAT	81	9.80	3.38–16.37	high
Proxy other													
Spain	Yuguero 2021 [53]	12/2017	12/2018	convenience	emergency room	22.0 ⁴	clinical	urine	NAAT	162	8.00	3.84–12.21	high
Norway	Gravningen 2013 [54]	NR/2009	NR/NR	convenience	students	17.0 ⁴	community	urine	NAAT	564	7.30	5.13-9.41	medium
Portugal	Silva 2013 [55]	NR	NR	convenience	students	18.0 ²	community	genital	NAAT	432	6.90	4.55-9.34	high
Italy	Panatto 2015 [56]	01/2010	06/2010	convenience	routine gynaecological check-up	16-26 ³	outpatient	genital	NAAT	566	5.80	3.90-7.76	high

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age ¹	Setting	Specimen	Test method	No. tested	PE (%)	95%-CI	RoB	
Italy	Matteelli 2016 [57]	11/2012	03/2013	convenience	students	18.4 ²	community	urine	NAAT	1 297	1.90	1.18-2.68	high	
Italy	Bianchi 2016 [58]	12/2008	12/2012	targeted	HPV vaccinated	18.8	trial	genital	NAAT	591	4.90	3.17-6.65	high	
Finland	Adhikari 2022 [59]	NR/2010	NR/2014	targeted	HPV vaccinated	18.5- 22 ³	trial	genital	NAAT	6 618	3.70	3.25-4.16	medium	
Non-EU/EFTA	N													
Representativ	ve													
UK	Sonnenberg 2013 [40]	09/2010	08/2012	probability	representative	16-24 ³	register	urine	NAAT	992	3.10	2.04-4.21	low	
Proxy other	Proxy other													
United Kingdom	Oakeshott 2019 [60]	09/2016	10/2016	cluster	students	17.9 ⁴	community	genital	NAAT	267	5.60	2.86-8.38	high	

ANC: antenatal care; AR: ano-rectal; GP: general practitioner; HPV: human papillomaviruses; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; PH: pharyngeal; RoB: risk of bias; UG: uro-genital.

1 median, unless indicated otherwise

2 mean

3 range

4 comprises men and women (not reported separately)

5 positive individuals only.

Figure 11. Pooled estimates for chlamydia in young women, total

Meta-analysis: CT-Young_women	Sampling date	Country	N		Weight	PE % [95% CI]
Bianchi 2016	2010	IT	591	⊢∎⊣	5.70%	4.90 [3.16, 6.64]
Panatto 2015	2010	IT	566	⊢∎⊣	5.46%	5.80 [3.87, 7.73]
Peuchant 2015	2011	FR	165	⊢ ∎−−1	3.05%	7.90 [3.79, 12.01]
Adhikari 2022	2012	FI	6618		6.91%	3.70 [3.25, 4.15]
O'Higgins 2017	2012	IE	2687	H a ti	6.64%	5.60 [4.73, 6.47]
Piñeiro 2016	2013	ES	596	⊢∎⊣	5.42%	6.40 [4.44, 8.36]
Matteelli 2016	2013	IT	1297		6.73%	1.90 [1.15, 2.65]
Czerwinski 2018	2014	PL	635	⊢∎⊣	5.94%	4.10 [2.56, 5.64]
Lopez-Corbeto 2021	2016	ES	81	⊢−−− −−−1	1.65%	9.80 [3.30, 16.30]
Skaletz-Rorowski 2021	2017	DE	133		2.76%	7.50 [3.02, 11.98]
Klavs 2022	2017	SI	112		3.68%	3.60 [0.16, 7.04]
Reyes-Lacalle 2022	2018	ES	391	⊢∎ 1	5.01%	5.60 [3.32, 7.88]
Yuguero 2021	2018	ES	162	⊢ _ ∎i	2.99%	8.00 [3.82, 12.18]
DoradoCriado 2021	2019	ES	136	⊢	— 1.65% 1	8.40 [11.89, 24.91]
Muñoz Santa 2022	2019	ES	599	⊢∎→	5.29%	7.20 [5.13, 9.27]
Bozicevic 2023	2021	HR	245	⊢∎ 1	5.26%	2.90 [0.81, 4.99]
Espies 2023	2022	ES	445	⊢∎→	4.91%	6.90 [4.53, 9.27]
Gravningen 2013	NR	NO	564	⊢∎→	5.19%	7.30 [5.16, 9.44]
Silva 2013	NR	PT	432	⊢∎→	4.87%	6.90 [4.50, 9.30]
Sonnenberg 2013	2011	UK	992	HEH	6.44%	3.10 [2.02, 4.18]
Oakeshott 2019	2016	UK	267	⊢ ∎→1	4.43%	5.60 [2.84, 8.36]
$l^2 = 85.7\%$			17714	•	100%	5.54 [4.59, 6.50]
			0.	00 10.00 20.00		

Pooled prevalence estimate

Figure 12. Pooled estimates for chlamydia in young women, representative of the general population

Meta-analysis: CT-Young_women representative	Sampling date	Country	N		Weight	PE % [95% CI]
Czerwinski 2018	2014	PL	635	⊨∎→	19.26%	4.10 [2.56, 5.64]
Skaletz-Rorowski 2021	2017	DE	133	<u>ا</u>	→ 5.95%	7.50 [3.02, 11.98]
Klavs 2022	2017	SI	112		8.79%	3.60 [0.16, 7.04]
Reyes-Lacalle 2022	2018	ES	391	⊢	14.18%	5.60 [3.32, 7.88]
Bozicevic 2023	2021	HR	245	· 	15.42%	2.90 [0.81, 4.99]
Espies 2023	2022	ES	445	⊢	13.70%	6.90 [4.53, 9.27]
Sonnenberg 2013	2011	UK	992	⊨∎⊣	22.71%	3.10 [2.02, 4.18]
$l^2 = 58\%$			2953	•	100%	4.44 [3.21, 5.68]
			ſ			
			0.0	0 5.00 10.00	15.00)
				Decled provolopes estin	noto	

Pooled prevalence estimate

Figure 13. Pooled estimates for chlamydia in young women in antenatal care (proxy population)

Meta-analysis: CT-Young_women proxy (ANC)	Sampling date	Country	Ν	Weight PE % [9	5% CI]
Peuchant 2015	2011	FR	165	▶ 15.42% 7.90 [3.79,	12.01]
O'Higgins 2017	2012	IE	2687	+■+ 22.68% 5.60 [4.73	, 6.47]
Piñeiro 2016	2013	ES	596		, 8.36]
Lopez-Corbeto 2021	2016	ES	81	·──── 10.27% 9.80 [3.30,	16.30]
DoradoCriado 2021	2019	ES	136	⊷ 1 0.25% 18.40 [11.89,	24.91]
Muñoz Santa 2022	2019	ES	599		, 9.27]
$l^2 = 86.4\%$			4264	100% 8.19 [5.40,	10.98]
			F		
			0.00	5.00 10.00 20.00 Pooled prevalence estimate	

Figure 14. Pooled estimates for chlamydia in young women, other proxy populations

Meta-analysis: CT-Young_women proxy (other)	Sampling Cou date	intry N		Weight	PE % [95% CI]							
Bianchi 2016	2010 l [°]	T 591	⊢_∎ 1	13.47%	4.90 [3.16, 6.64]							
Panatto 2015	2010 l [°]	T 566	⊢	12.91%	5.80 [3.87, 7.73]							
Adhikari 2022	2012 F	I 6618	HEH	16.36%	3.70 [3.25, 4.15]							
Matteelli 2016	2013 l [°]	T 1297	⊨∎⊣	15.94%	1.90 [1.15, 2.65]							
Yuguero 2021	2018 E	S 162	ا م	−−−1 7.07%	8.00 [3.82, 12.18]							
Gravningen 2013	NR N	O 564	⊢	12.27%	7.30 [5.16, 9.44]							
Silva 2013	NR P	T 432	⊦ i	11.52%	6.90 [4.50, 9.30]							
Oakeshott 2019	2016 U	K 267	⊢	10.46%	5.60 [2.84, 8.36]							
$l^2 = 89\%$		10497	•	100%	5.16 [3.69, 6.63]							
		F										
		0.00	4.00 8.00	12.00								
		Pooled prevalence estimate										

Table 10. Prevalence estimates for chlamydia in young men

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age1	Setting	Specimen	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Representat	ive												
Germany	Skaletz- Rorowski 2021 [44]	12/2016	07/2018	convenience	representative	23.0 ⁴	community	any-site (AR/UR/PH)	NAAT	133	8.20	3.59-12.95	high
Spain	Reyes-Lacalle 2022 [45]	01/2018	11/2019	convenience	representative	21.1 ^{4, 5} 20.1 ²	community	urine	NAAT	232	5.20	2.32-8.02	high
Spain	Espies 2023 [46]	09/2021	05/2022	convenience	representative	20.0 ^{2, 4}	community	urine	NAAT	166	1.20	0.00-2.86	high
Poland	Czerwinski 2018 [47]	09/2012	06/2015	probability	representative	18.7 ^{2, 4}	community	urine	NAAT	315	4.10	1.93-6.32	high
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representative	18-49 ³	register	urine	NAAT	80	2.50	0.00-5.92	low
Croatia	Bozicevic 2023 [48]	11/2021	01/2022	probability, internet- based	representative	21.7 ^{2, 4}	panel database	urine	NAAT	203	1.00	0.00-2.34	medium
Proxy other													
Spain	Yuguero 2021 [53]	12/2017	12/2018	convenience	emergency room	22.0 ⁴	clinical	urine	NAAT	136	6.60	2.44-10.80	high
Norway	Gravningen 2013 [54]	NR/2009	NR/NR	convenience	students	17.0 ⁴	community	urine	NAAT	470	3.60	1.93-5.31	medium
Italy	Matteelli 2016 [57]	11/2012	03/2013	convenience	students	18.5 ²	community	urine	NAAT	762	1.40	0.60-2.29	high
Non-EU/EFT													
Representat	ive												
UK	Sonnenberg 2013 [40]	09/2010	08/2012	probability	representative	16-24 ³	register	urine	NAAT	840	2.30	1.26-3.27	low
Proxy other													
United Kingdom	Oakeshott 2019 [60]	09/2016	10/2016	cluster	students	17.9 ⁴	community	urine	NAAT	236	6.80	3.57-9.99	high

AR: ano-rectal; GP: general practitioner; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; PH: pharyngeal; RoB: risk of bias; UG: uro-genital.

1 median, unless indicated otherwise

2 mean

3 range

4 comprises men and women (not reported separately)

5 positive individuals only.

Figure 15. Pooled estimates for chlamydia in young men, total

Meta-analysis: CT-Young_men	Sampling date	Country	N	Weight PE % [95% CI]
Matteelli 2016	2013	IT	762	⊢∎⊣ 12.59% 1.40 [0.55, 2.25]
Czerwinski 2018	2014	PL	315	9.55% 4.10 [1.90, 6.30]
Skaletz-Rorowski 2021	2017	DE	133	·
Klavs 2022	2017	SI	80	6.81% 2.50 [0.00, 5.92]
Reyes-Lacalle 2022	2018	ES	232	→ 8.00% 5.20 [2.35, 8.05]
Yuguero 2021	2018	ES	136	• 5.49% 6.60 [2.42, 10.78]
Bozicevic 2023	2021	HR	203	- ■ 11.58% 1.00 [0.00, 2.36]
Espies 2023	2022	ES	166	10.87% 1.20 [0.00, 2.86]
Gravningen 2013	NR	NO	470	⊢ ■ 10.81% 3.60 [1.91, 5.29]
Sonnenberg 2013	2011	UK	840	⊢■→ 12.31% 2.30 [1.29, 3.31]
Oakeshott 2019	2016	UK	236	→ 7.23% 6.80 [3.59, 10.01]
$l^2 = 80.7\%$			3573	
				i i i
				0.00 5.00 10.00 15.00

Pooled prevalence estimate

Figure 16. Pooled estimates for chlamydia in young men, representative of the general population

Meta-analysis: CT-Young_men representative	Sampling date	Country	N				Weight	PE % [95% CI]
Czerwinski 2018	2014	PL	315	-			14.85%	4.10 [1.90, 6.30]
Skaletz-Rorowski 2021	2017	DE	133		ŀ	•	⊣ 6.82%	8.20 [3.52, 12.88]
Klavs 2022	2017	SI	80				10.08%	2.50 [0.00, 5.92]
Reyes-Lacalle 2022	2018	ES	232	L	•		12.10%	5.20 [2.35, 8.05]
Bozicevic 2023	2021	HR	203				18.68%	1.00 [0.00, 2.36]
Espies 2023	2022	ES	166				17.32%	1.20 [0.00, 2.86]
Sonnenberg 2013	2011	UK	840	-∎-	1		20.14%	2.30 [1.29, 3.31]
$l^2 = 73.7\%$			1969	-			100%	2.91 [1.44, 4.38]
					1	1		
			c	.00	5.00	10.00	15.00	
				Poo	led preva	lence estima	te	

Figure 117. Pooled estimates for chlamydia in young men, other proxy populations

Meta-analysis: CT-Young_men proxy (other)	Sampling _C date	ountry	N	Weight PE % [95% Cl]
Matteelli 2016	2013	IT 7	762	⊢∎→ 31.62% 1.40 [0.55, 2.25]
Yuguero 2021	2018	ES 1	36	• 17.76% 6.60 [2.42, 10.78]
Gravningen 2013	NR	NO 4	170	▶ _ 28.76% 3.60 [1.91, 5.29]
Oakeshott 2019	2016	UK 2	236	→ 21.86% 6.80 [3.59, 10.01]
$l^2 = 84.8\%$		1	604	100% 4.14 [1.53, 6.74]
			0.0	00 4.00 8.00 12.00
				Pooled prevalence estimate

Populations of special interest

Chlamydia in men who have sex with men

The prevalence of CT is estimated to be 9.72% (95% CI 8.27–11.16) in MSM visiting STI clinics (see Figure 18), 6.08% (95% CI 0.75–11.41) in MSM living with HIV (see Figure 19), 9.57% (95% CI 7.11–12.02) in MSM on PrEP (see Figure 20) and 15.35% (95% CI 9.62–21.08) in MSM engaging in 'high-risk' sexual behaviour, see Figure 41).

Table 11. Prevalence estimates for chlamydia in MSM

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age ¹	Setting	Specimen	Additional specimen tested	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA									_	-			
MSM visiting	STI clinics												
Netherlands	Druckler 2018 [61]	07/2016	12/2016	convenience	35.0	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	4 925	9.90	9.07-10.74	medium
Netherlands	Evers 2022 [62]	NR/2016	NR/2017	convenience	37.0	STI/GUM clinic	ano-rectal	UG, PH, any- site	NAAT	16 1275	8.00	7.87-8.13	medium
France	Rondeau 2019 [63]	04/2016	12/2016	convenience	NR	STI/GUM clinic	ano-rectal	UR	NAAT	111	17.10	10.11-24.12	medium
Spain	Ayerdi Aguirrebengoa 2020 [64]	01/2016	12/2018	convenience	18.1 ²	STI/GUM clinic	any-site (AR/UG/PH)	UG, PH, AR	NAAT	149	10.10	5.24-14.90	medium
Portugal	Ribeiro 2019 [65]	01/2016	05/2018	convenience	31.0	STI/GUM clinic	any-site (AR/UG/PH)	UG, PH, AR	NR	1 489	7.59	6.24-8.93	high
Netherlands	Achterbergh 2020 [66]	09/2017	12/2017	convenience	35.0	STI/GUM clinic	any-site (AR/UG/PH)	UG, PH, AR	NAAT	4 460	9.70	8.84-10.58	medium
Netherlands	Van Aar 2020 [67]	01/2017	12/2017	convenience	36.0	STI/GUM clinic	ano-rectal	none	NAAT	43 873	7.10	6.86-7.34	medium
Iceland	Hilmarsdottir 2021 [68]	10/2018	01/2019	convenience	NR	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	52	11.50	2.85-20.22	high
Spain	Hoyos- Mallecot 2022 [69]	11/2016	11/2019	convenience	34.0	STI/GUM clinic	any-site (AR/UR/PH)	none	NAAT	6 304	9.00	8.29-9.70	medium
Germany	Jansen 2020 [70]	02/2018	07/2018	convenience	39.0	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	2 203	9.90	8.65-11.14	medium
France	Rahib 2022 [71]	04/2018	06/2018	convenience	30.0	dating app/social media	any-site (AR/UR/PH)	UR, PH, AR	NAAT	1 930	9.30	7.98–10.57	high
MSM HIV													
Germany	Spinner 2018 [72]	02/2016	08/2016	convenience	43.2	STI/GUM clinic	pooled (AR/UG/PH)	none	NAAT	296	8.80	5.56-12.01	high
France	Farfour 2021 [73]	09/2017	12/2017	convenience	47.0	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	291	8.96	5.66-12.21	high
MSM PrEP													
Belgium	Reyniers 2018 [74]	09/2015	06/2016	convenience	38.0	unclear	any-site (AR/UR/PH)	UR, PH, AR	NAAT	196	11.70	7.23–16.24	medium
Italy	Nozza 2022 [75]	05/2017	05/2022	convenience	34.5	STI/GUM clinic	pooled (AR/UG/PH)	none	NAAT	624	10.30	7.88-12.64	medium
Switzerland	Hovaguimian 2022 [76]	04/2019	01/2020	convenience	40.0	STI/GUM clinic	pooled (AR/UG/PH)	none	NAAT	710	11.30	8.94-13.59	medium

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age1	Setting	Specimen	Additional specimen tested	Test method	No. tested	РЕ (%)	95%-CI	RoB
Bulgaria	Pakov 2022 [77]	10/2020	08/2022	convenience	33.0	STI/GUM clinic	urine or urogenital	none	NAAT	410	5.60	3.38–7.84	high
Austria	Chromy 2023 [78]	07/2020	12/2021	convenience	33.8	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	131	10.00	4.80-15.04	high
MSM `high-ri	sk'												
Switzerland	Schmidt 2020 [79]	01/2016	06/2017	convenience	33.0	STI/GUM clinic	pooled (AR/UG/PH)	none	NAAT	779	8.70	6.75-10.71	high
Italy	Foschi 2018 [80]	01/2017	11/2017	convenience	35.5 ²	STI/GUM clinic	ano-rectal	UR, PH	NAAT	165	25.40	18.81-32.10	high
Germany	Streeck 2022 [81]	06/2018	03/2019	convenience	33.0	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	1 043	12.80	10.82-14.88	medium
Poland	Szetela 2023_hr [82]	12/2019	12/2020	convenience	NR	STI/GUM clinic	any-site (AR/UG/PH)	UG, PH, AR	NAAT	103	20.58	12.61-28.17	high
Germany	Weidlich 2023 [83]	04/2021	07/2022	convenience	37.0	STI/GUM clinic	any-site (AR/UR/UG/ PH)	UR/UG, PH, AR	NAAT	236	12.70	8.46-16.96	high
MSM other													
Poland	Szetela 2023_lr⁴ [82]	12/2019	12/2020	convenience	NR	STI/GUM clinic	any-site (AR/UG/PH)	UG, PH, AR	NAAT	64	7.93	1.24–14.39	high
Spain	De La Mora 2022 ⁵ [84]	03/2018	05/2019	convenience	39.0 ²	STI/GUM clinic	any-site or pooled (AR/UR/PH)	none	NAAT	157	10.00	5.46-14.92	high
Non-EU/EFT	A												
MSM visiting	STI clinics												
UK	Charin 2023 [85]	12/2016	01/2020	convenience	27.0	online sexual health service	any-site (AR/UR/PH)	UR, PH, AR	NAAT	5 051	5.90	5.25-6.55	high
UK	Ogaz 2019 [86]	01/2017	12/2017	convenience	NR	STI/GUM clinic	any-site	AR	NAAT	128 772	12.10	11.92-12.28	medium
Georgia	Kevlishvili 2023 [87]	NR/2019	NR/2019	convenience	18-65 ³	STI/GUM clinic	any-site or pooled (AR/UG)	none	IF+NAA T	1 698	15.70	13.99–17.46	medium
MSM HIV													
Türkiye	Taspinar Sen 2023 [88]	08/2018	02/2020	convenience	38.4 ²	STI/GUM clinic	urine	none	NAAT	106	0.94	0.00-2.78	high

AR: ano-rectal swab; GUM: genitourinary medicine; NAAT: nucleic acid amplification test; NR: not reported; PH: pharyngeal swab; RoB: risk of bias; STI: sexually transmitted infection; UG: urogenital swab; UR: urine.

1 median, unless indicated otherwise; 2 mean; 3 range; 4 MSM reporting sexual behaviour that was classified as 'low-risk' by the study authors; 5 MSM engaging in chemsex.

Figure 18. Pooled estimates for chlamydia in MSM visiting STI clinics

Meta-analysis: CT-MSM other	Sampling date	Country	Ν				Weight	PE % [95% CI]
Rondeau 2019	2016	FR	111		L		⊣2.85% 1	7.10 [10.09, 24.11]
Druckler 2018	2016	NL	4925		H		8.32%	9.90 [9.07, 10.73]
Evers 2022	2016	NL	161275				8.55%	8.00 [7.87, 8.13]
Ayerdi Aguirrebengoa 2020	2017	ES	149		•		4.38%	10.10 [5.27, 14.93]
Achterbergh 2020	2017	NL	4460		HEH		8.30%	9.70 [8.83, 10.57]
vanAar 2020	2017	NL	43873	-			8.53%	7.10 [6.86, 7.34]
Ribeiro 2019	2017	PT	1489	⊢∎	-		7.97%	7.59 [6.24, 8.94]
Jansen 2020	2018	DE	2203		⊢∎⊣		8.04%	9.90 [8.65, 11.15]
Hoyos-Mallecot 2022	2018	ES	6304	1			8.38%	9.00 [8.29, 9.71]
Rahib 2022	2018	FR	1930	ŀ	∎⊣		8.01%	9.30 [8.01, 10.59]
Hilmarsdottir 2021	2018	IS	52	H	•		2.10%	11.50 [2.82, 20.18]
Ogaz 2019	2017	UK	128772				8.54% 1	2.10 [11.92, 12.28]
Charin 2023	2018	UK	5051	-			8.41%	5.90 [5.25, 6.55]
Kevlishvili 2023	2019	GE	1698			⊢∎⊣	7.62% 1	5.70 [13.97, 17.43]
l ² = 99.3%			362292		٠		100%	9.72 [8.27, 11.16]
			i	1				
			0.00	5.00	10.00	20.00		
				Pooled	arovale	ance estimate		

Pooled prevalence estimate

Figure 19. Pooled estimates for chlamydia in MSM living with HIV

Meta-analysis: CT-MSM living with HIV	Sampling date	Country	Ν				Weight	PE % [95% CI]
Spinner 2018	2016	DE	296		<u>ب</u>		32.43%	8.80 [5.58, 12.02]
Farfour 2021	2017	FR	291		ŀ		+ 32.31%	8.96 [5.68, 12.24]
Taspinar Sen 2023	2019	TR	106	⊢⊞ —-1			35.26%	0.94 [0.00, 2.78]
l ² = 91.2%			693				100%	6.08 [0.75, 11.41]
					1]	
			0	.00	5.00	10.00	15.00	
				Poo	led preval	ence estima	ate	

Figure 20. Pooled estimates for chlamydia in MSM on PrEP

Meta-analysis: CT-MSM receiving PrEP	Sampling date	Country	Ν	Weight PE % [95% CI]
Reyniers 2018	2016	BE	196	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►
Hovaguimian 2022	2019	СН	710	▶ 23.90% 11.30 [8.97, 13.63]
Nozza 2022	2019	IT	624	→ 23.66% 10.30 [7.92, 12.68]
Chromy 2023	2021	AT	131	• 13.09% 10.00 [4.88, 15.12]
Pakov 2022	2021	BG	410	∠4.33% 5.60 [3.37, 7.83]
$l^2 = 70.5\%$			2071	100% 9.57 [7.11, 12.02]
			i	
		0	.00	5.00 10.00 15.00 20.00
				Pooled prevalence estimate

Figure 21. Pooled estimates for chlamydia in MSM high risk

Meta-analysis: CT-MSM high risk	Sampling date	Country	Ν	Weight PE % [95% CI]
Schmidt 2020	2016	СН	779	H■ 22.67% 8.70 [6.72, 10.68]
Foschi 2018	2017	IT	165	⊷ • • • 17.74% 25.40 [18.75, 32.05]
Streeck 2022	2018	DE	1043	11.80 12.80 10.77 , 14.83 12.80 11.77 , 14.83 11.8
Szetela 2023_hr	2020	PL	103	• 16.30% 20.58 [12.80, 28.36]
Weidlich 2023	2021	DE	236	▶ 20.65% 12.70 [8.45, 16.95]
l ² = 93%			2326	100% 15.35 [9.62, 21.08]
			5	5.00 20.00 35.00
			Po	oled prevalence estimate

Chlamydia in sex workers

Among female sex workers, pooled CT prevalence is estimated to be 5.50% (95% CI 4.31–6.69) and 6.04% (95% CI 1.65–10.44) among male and transgender sex workers (see Table 12, Figure 62 and Figure 63). One conference abstract was identified reporting a CT prevalence of 82.60% (95% CI 67.12–98.10) among mixed gender sex workers in the UK.

Chlamydia in people who inject drugs

No studies reporting CT prevalence data for PWID were identified.

Table 12. Prevalence estimates for chlamydia in sex workers

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age1	Setting	Specimen	Additional specimen tested	Test method	No. tested	РЕ (%)	95%-CI	RoB	
EU/EFTA														
Female sex v	emale sex workers													
Portugal	Almeida 2020_f [89]	09/2015	09/2016	convenience	36.2 ^{2, 4}	outreach	any-site (AR/UR/PH)	UR, PH, AR	NAAT	74	2.70	0.00-6.40	high	
Belgium	Coorevits 2018 [90]	06/2015	06/2016	convenience	33.0 ²	outreach	urine or genital	none	NAAT	299	9.00	5.78-12.28	high	
Netherlands	Druckler 2020_f [91]	01/2014	12/2015	convenience	28.0	health centre	ano-rectal	UG, PH, AR	NAAT	1 217	6.10	4.74–7.42	medium	
Netherlands	van Dulm 2020 [92]	01/2016	09/2016	convenience	28.0	community	genital	UG, PH, AR	NAAT	1 213	4.10	3.00-5.24	medium	
Switzerland	Vernazza 2020 [93]	01/2016	06/2017	convenience	31.0	STI clinic	pooled (AR/UG/PH)	none	NAAT	490	6.30	4.17-8.48	medium	
Belgium	Verougstraete 2020 [94]	02/2018	07/2019	convenience	NR	community	any-site (AR/UG/PH)	UG, PH, AR	NAAT	489	5.10	3.16-7.06	high	
Switzerland	Vu 2020 [95]	04/2015	12/2016	convenience	18-60 ³	community	urine	none	NAAT	96	6.25	1.41-11.09	high	
Male and tra	nsgender sex wo	orkers												
Portugal	Almeida 2020_m [89]	09/2015	09/2016	convenience	36.2 ^{2, 4}	outreach	any-site (AR/UR/PH)	UR, PH, AR	NAAT	12	0.00	0.00-14.30	high	
Portugal	Almeida 2020_t [89]	09/2015	09/2016	convenience	36.2 ^{2, 4}	outreach	any-site (AR/UR/PH)	UR, PH, AR	NAAT	14	0.00	0.00-12.42	high	
Spain	Ferrer 2022 [96]	10/2017	12/2018	convenience	33.0 ²	community	any-site (AR/UR/PH)	UR, PH, AR	NAAT	147	10.30	5.31-15.10	high	
Netherlands	Druckler 2020_m [91]	01/2014	12/2015	convenience	28.0	health centre	urine	UG, PH, AR	NAAT	84	6.00	0.89-11.01	medium	
Netherlands	Druckler 2020_t [91]	01/2014	12/2015	convenience	39.0	health centre	ano-rectal	UG, PH, AR	NAAT	15	13.30	0.00-30.54	medium	
Non-EU/EFT	A						:							
Mixed gende	r sex workers													
UK	Sultan 2021 [97]	NR	NR	convenience	NR	outreach	any-site (AR/UG/PH)	UG, PH, AR	NAAT	23	82.60	67.12-98.10	high	

AR: ano-rectal; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; PH: pharyngeal; RoB: risk of bias; UG: uro-genital; UR: urine.

1 median, unless indicated otherwise; 2 mean; 3 range; 4 comprises male, female, and transgender sex workers (not reported separately).

Figure 22. Pooled estimates for chlamydia in female sex workers

Meta-analysis: CT-Sexworkers_f	Sampling date	Country	N		Weight	PE % [95% CI]
Druckler 2020_f	2014	NL	1217	⊨∎→	21.92%	6.10 [4.76, 7.44]
Coorevits 2018	2015	BE	299	F	→ 9.33%	9.00 [5.75, 12.25]
Vernazza 2020	2016	СН	490	⊢	15.24%	6.30 [4.14, 8.46]
Vu 2020	2016	СН	96	⊢−−− −−−−−	5.05%	6.25 [1.41, 11.09]
vanDulm 2020	2016	NL	1213		23.96%	4.10 [2.98, 5.22]
Almeida 2020_f	2016	PT	74		7.75%	2.70 [0.00, 6.39]
Verougstraete 2020	2018	BE	489	⊢ ∎−−1	16.74%	5.10 [3.15, 7.05]
$l^2 = 54.1\%$			3878	•	100%	5.50 [4.31, 6.69]
]	
			0.0	5.00 10.00	15.00	
				B. I. I		

Pooled prevalence estimate

Figure 23. Pooled estimates for chlamydia in male and transgender sex workers

Meta-analysis: CT-Sexworkers_m+t	Sampling Country date	Ν	Weight PE % [95% CI]
Druckler 2020_m	2014 NL	84 ⊨∎+	31.75% 6.00 [0.94, 11.06]
Druckler 2020_t	2014 NL	15	
Almeida 2020_m	2016 PT	12	13.37% 0.00 [0.00, 10.45]
Ferrer 2022	2018 ES	147	32.64% 10.30 [5.41, 15.19]
Almeida 2020_t	2106 PT	14 •	16.41% 0.00 [0.00, 9.08]
$l^2 = 38.9\%$		272	100% 6.04 [1.65, 10.44]
		0.00 10.00 20.00	30.00 40.00
		Pooled prevalence e	

3.4 Gonorrhoea prevalence estimates

The following table summarises the pooled gonorrhoea prevalence estimates for all study populations. Details of the studies included and the meta-analyses are provided in the sub-chapters below.

Population	Sub-group	No. studies	No. individuals	Pooled estimate [%]	95%-CI lower	95%-CI upper	I ²
Women	combined ¹	11	21 918	0.24	0.00	0.50	95.34
Women	representative	3	3 668	0.07	0.00	0.18	0.00
Women	proxy (ANC)	3	13 239	0.02	0.00	0.15	61.99
Women	proxy (other)	5	5 011	0.53	0.00	1.11	87.09
Men	combined ¹	5	3 128	0.10	0.00	0.22	0.00
Men	representative	3	2 455	0.08	0.00	0.21	0.00
Men	proxy (other)	2	673	0.91	0.00	2.86	87.12
Young women	combined ¹	12	5 354	0.51	0.04	0.99	92.60
Young women	representative	4	1 677	0.20	0.00	0.51	17.10
Young women	proxy (ANC)	5	1 577	1.42	0.00	2.97	89.71
Young women	proxy (other)	3	2 100	0.26	0.00	0.88	80.90
Young men	combined ¹	6	2 213	0.07	0.00	0.21	0.00
Young men	representative	4	1 215	2.00	0.00	5.78	97.22
Young men	proxy (other)	2	998	0.45	0.00	1.66	68.03
MSM	visiting STI clinics	13	318 954	10.46	6.94	13.97	99.86
MSM	"high risk"	5	2 326	14.37	7.76	20.98	95.27
MSM	HIV	3	693	4.74	0.75	8.72	86.78
MSM	PrEP	5	2 071	8.99	5.31	12.66	89.01
Sex workers	female	7	3 878	2.22	0.63	3.80	93.59
Sex workers	male+trans	5	258	6.36	0.00	14.25	78.97

ANC: antenatal care; HIV: human immunodeficiency virus; PrEP: pre-exposure prophylaxis; STI: sexually transmissible infection.

1 prevalence estimates combining both, representative studies and studies in proxy populations.

General population

Gonorrhoea in women

Overall prevalence of NG was estimated to be 0.24% (95% CI 0.00–0.50) among women (see Table 14 and Figure 24). Based on studies among women representative of the general population only, NG prevalence is estimated to be 0.07% (95% CI 0.00–0.18, see Figure 25), with the lowest prevalence reported in Slovenia (0.00%; 95% CI 0.00–0.23) and the highest in the UK (0.10%; 95% CI 0.00–0.23). Among women in antenatal care, prevalence of NG is estimated to be 0.02% (95% CI 0.00–0.15, see Figure 26), with the highest prevalence reported in the Netherlands (0.40%; 95% CI 0.00–0.90). In female proxy populations, including healthy women attending routine gynaecological check-ups, cervical and/or breast cancer screening, women attending GPs and healthcare website users, and female military personnel, pooled prevalences for NG is estimated to be 0.53% (95% CI 0.00–1.11, see Figure 27).

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age1	Setting	Specimen	Test method	No. tested	PE (%)	95%-CI	RoB
EU/EFTA													
Representat	ive												
Netherlands	Heijne 2019 [21]	11/2016	01/2017	probability	representative	18-34 ³	register	urine or genital	NAAT	410	0.00	0.00-0.46	high
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representative	18-49 ³	register	urine	NAAT	593	0.00	0.00-0.32	low
Proxy ANC													
Netherlands	Op de Coul 2021 [27]	NR/2012	NR/2016	convenience	ANC	27.0	clinical	genital	NAAT	548	0.40	0.00-0.87	high
France	Peuchant 2015 [25]	01/2011	06/2011	convenience	ANC	30.0	clinical	genital	NAAT	1 004	0.00	0.00-0.19	medium
Spain	Piñeiro 2016 [28]	01/2011	12/2014	convenience	ANC	33.0	clinical	urine	NAAT	11 687	0.00	0.00-0.02	high
Proxy other													
France	Berhonde 2015 [30]	01/2013	06/2014	convenience	pre-abortion consultation	21.0	clinical	genital	NAAT	2 824	1.30	0.89-1.73	high
Italy	Camporiondo 2016 [35]	01/2013	12/2013	convenience	breast cancer screening	49.0	clinical	genital	NAAT	309	0.00	0.00-0.61	high
Portugal	Silva 2021 [98]	01/2010	12/2016	convenience	students	22.0 ²	community	genital	NAAT	680	1.30	0.46-2.18	high
Ireland	Hassan 2016 [39]	07/2014	01/2015	convenience	cervical cancer screening	33.0	outpatient	genital	NR	236	0.00	0.00-0.80	high
Non-EU/EFT	Ά												
Representat	ive												
UK	Sonnenberg 2013 [40]	09/2010	08/2012	probability	representative	16-44 ³	register	urine	NAAT	2 665	0.10	0.00-0.24	low
Proxy other													
North Macedonia	Albig 2023 [42]	NR/2014	NR/2018	convenience	gynaecology and obstetrics department	NR	clinical	NR	NAAT	962	0.20	0.00-0.50	high

ANC: antenatal care; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; RoB: risk of bias

1 median, unless indicated otherwise

2 mean

3 range.

Figure 24. Pooled estimates for gonorrhoea in women, total

Meta-analysis: NG-Women	Sampling date	Country	Ν					Weight	PE % [95% CI]
Peuchant 2015	2011	FR	1004	•				10.90%	0.00 [0.00, 0.14]
Piñeiro 2016	2013	ES	11687	•				11.24%	0.00 [0.00, 0.01]
Berhonde 2015	2013	FR	2824			•		8.70%	1.30 [0.88, 1.72]
Camporiondo 2016	2013	IT	309	•				8.44%	0.00 [0.00, 0.45]
Silva 2021	2013	PT	680			•		5.05%	1.30 [0.44, 2.16]
Hassan 2016	2014	IE	236	•				7.17%	0.00 [0.00, 0.58]
Op de Coul 2021	2014	NL	548					7.90%	0.40 [0.00, 0.90]
Heijne 2019	2016	NL	410	•				9.46%	0.00 [0.00, 0.34]
Klavs 2022	2017	SI	593	•				10.31%	0.00 [0.00, 0.23]
Sonnenberg 2013	2011	UK	2665	₩				10.95%	0.10 [0.00, 0.23]
Albig 2023	2016	МК	962					9.88%	0.20 [0.00, 0.49]
$l^2 = 95.3\%$			21918	•				100%	0.24 [0.00, 0.50]
				i – – –	1	I	1		
				0.00 0.50	1.00	1.50	2.00	2.50	
				Pooled	l preval	ence e	stimate		

Figure 25. Pooled estimates for gonorrhoea in women, representative of the general population

Meta-analysis: NG-Women representative	Sampling date	Country	N				Weight	PE % [95% CI]
Heijne 2019	2016	NL	410				9.91%	0.00 [0.00, 0.34]
Klavs 2022	2017	SI	593		i		20.68%	0.00 [0.00, 0.23]
Sonnenberg 2013	2011	UK	2665				69.41%	0.10 [0.00, 0.23]
$l^{2} = 0\%$			3668				100%	0.07 [0.00, 0.18]
			0.	00 0.10	0 0.20	0.30	0.40	
				Pooled	d prevalence	e estimat	e	

Figure 26. Pooled estimates for gonorrhoea in women in antenatal care (proxy population)

Meta-analysis: NG-Women proxy (ANC)	Sampling date	Country	Ν				Weight	PE % [95% CI]
Peuchant 2015	2011	FR	1004	— —1			35.52%	0.00 [0.00, 0.14]
Piñeiro 2016	2013	ES	11687	•			58.47%	0.00 [0.00, 0.01]
Op de Coul 2021	2014	NL	548				6.01%	0.40 [0.00, 0.90]
$l^2 = 62\%$			13239	•			100%	0.02 [0.00, 0.15]
			(0.40 0.60		1.00	
				Pooled p	prevalence e	stimate		

Figure 27. Pooled estimates for gonorrhoea in women, other proxy populations

Meta-analysis: NG-Women proxy (other)	Sampling _C date	Country	N					Weight	PE % [95% CI]
Berhonde 2015	2013	FR	2824		— —	∎1		21.32%	1.30 [0.88, 1.72]
Camporiondo 2016	2013	IT	309	• 1				21.00%	0.00 [0.00, 0.45]
Silva 2021	2013	PT	680			•		15.74%	1.30 [0.44, 2.16]
Hassan 2016	2014	IE	236	.				19.30%	0.00 [0.00, 0.58]
Albig 2023	2016	MK	962	⊨∎1				22.64%	0.20 [0.00, 0.49]
$l^2 = 87.1\%$			5011					100%	0.53 [0.00, 1.11]
				i – – – – – – –	1	1			
			0	.00 0.50	1.00	1.50	2.00	2.50	
				Pooled	prevale	ence es	stimate		

Gonorrhoea in men

Overall prevalence of NG was estimated to be 0.10% (95% CI 0.00–0.22) among men (see Table 15 and Figure 28Figure). In men representative of the general population only, NG prevalence is estimated to be 0.08% (95% CI 0.00–0.21, see Figure 29), with the highest prevalence in the UK (0.10%; 95% CI 0.00–0.25). Based on two studies among male proxy populations, including male partners of women in ANC, pooled NG prevalence is estimated to be 0.91 (95% CI 0.00–2.86, see Figure 30).

Table 15. Prevalence estimates for gonorrhoea in the general male population

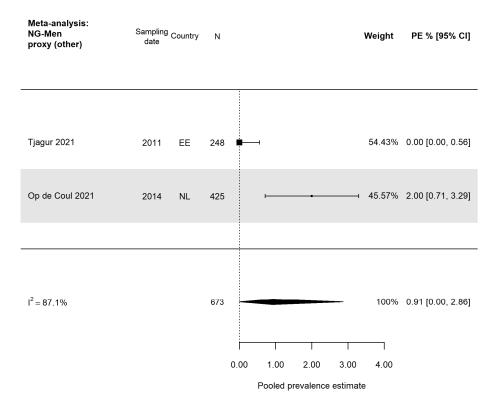
Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age1	Setting	Specimen	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Representati	ve												
Netherlands	Heijne 2019 [21]	11/2016	01/2017	probability	representative	18-34 ³	register	urine	NAAT	140	0.00	0.00-1.34	high
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representative	18-49 ³	register	urine	NAAT	430	0.00	0.00-0.44	low
Proxy other													
Netherlands	Op de Coul 2021 [27]	NR/2012	NR/2016	convenience	partners of women in ANC	29.0	clinical	urine	NAAT	425	2.00	0.59–3.17	high
Estonia	Tjagur 2021 [43]	01/2010	12/2012	convenience	partners of women in ANC	31.8	clinical	urine	NAAT	248	0.00	0.00-0.76	medium
Non-EU/EFT/	۹. The second												
Representati	ve												
UK	Sonnenberg 2013 [40]	09/2010	08/2012	probability	representative	16-44 ³	register	urine	NAAT	1 885	0.10	0.00-0.25	low

ANC: antenatal care; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; RoB: risk of bias.

1 median, unless indicated otherwise

2 mean

3 range.


Figure 28. Pooled estimates for gonorrhoea in men, total

Meta-analysis: NG-Men	Sampling date	Country	Ν					Weight	PE % [95% CI]
Tjagur 2021	2011	EE	248	-	H			5.32%	0.00 [0.00, 0.56]
Op de Coul 2021	2014	NL	425		ı		i	0.98%	2.00 [0.71, 3.29]
Heijne 2019	2016	NL	140	-				1.71%	0.00 [0.00, 0.98]
Klavs 2022	2017	SI	430	•1				15.91%	0.00 [0.00, 0.32]
Sonnenberg 2013	2011	UK	1885	■				76.08%	0.10 [0.00, 0.25]
$ ^2 = 0\%$			3128	٠				100%	0.10 [0.00, 0.22]
							1		
				0.00	1.00	2.00	3.00	4.00	
					Pooled p	revalence	estimate	e	

Figure 29. Pooled estimates for gonorrhoea in men, representative of the general population

Meta-analysis: NG-Men representative	Sampling Cou date	ntry N				Weight	PE % [95% CI]
Heijne 2019	2016 N	L 140				1.82%	0.00 [0.00, 0.98]
Klavs 2022	2017 S	il 430	•	4		16.98%	0.00 [0.00, 0.32]
Sonnenberg 2013	2011 U	K 1885	 --			81.20%	0.10 [0.00, 0.25]
l ² = 0%		2455	-			100%	0.08 [0.00, 0.21]
		(0.00	0.40	0.80		
			Pooled p	prevalence	estimate		

Figure 30. Pooled estimates for gonorrhoea in men, other proxy populations

Gonorrhoea in young women

Overall NG prevalence, based on studies among young women, is estimated to be 0.51% (95% CI 0.04–0.99, see Table 16 and Figure 31). When considering only studies among young women representative of the general population of young people, pooled prevalence is estimated to be 0.20% (95% CI 0.00–0.51, see Figure 32), with the lowest prevalence reported Slovenia (0.00%; 95% CI 0.00–1.28) and the highest in Germany (1.50%; 95% CI 0.00–3.57). Among young women in antenatal care, pooled NG prevalence is estimated to be 1.42% (95% CI 0.00–2.97, see Figure 33), and among other young female proxy populations, 0.26% (95% CI 0.00–0.88, see Figure 34Figure).

Table 16. Prevalence estimates for gonorrhoea in young women

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age ¹	Setting	Specimen	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA		otart	Circ										
Representat	ive												
Spain	Espies 2023 [46]	09/2021	05/2022	convenience	representative	20.0 ^{2, 4}	community	urine	NAAT	445	0.45	0.00-1.07	high
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representative	18-24 ³	register	urine	NAAT	107	0.00	0.00-1.74	low
Germany	Skaletz- Rorowski 2021 [44]	12/2016	07/2018	convenience	representative	23.0 ^{2, 4}	community	any-site (AR/UG/PH)	NAAT	133	1.50	0.00-3.57	high
Proxy ANC													
Spain	Dorado Criado 2021 [49]	11/2018	06/2019	convenience	ANC	22	clinical	urine	NAAT	136	3.00	0.10-5.78	high
Spain	Lopez-Corbeto 2021 [52]	01/2016	06/2016	NR	ANC	<25.0	clinical	urine	NAAT	81	3.70	0.00-7.82	high
Spain	Muñoz Santa 2022 [50]	01/2019	10/2020	convenience	ANC	<25.0	NR	genital	NAAT	599	2.80	1.51-4.17	high
France	Peuchant 2015 [25]	01/2011	06/2011	convenience	ANC	18-24 ³	clinical	genital	NAAT	165	0.00	0.00-1.13	medium
Spain	Piñeiro 2016 [28]	01/2011	12/2014	convenience	ANC	<25.0	clinical	urine	NAAT	596	0.00	0.00-0.32	high
Proxy other													
Italy	Matteelli 2016 [57]	11/2012	03/2013	convenience	students	18.4 ²	community	urine	NAAT	1 297	0.00	0.00-0.15	high
Portugal	Silva 2021 [98]	01/2010	12/2016	convenience	students	15-25 ³	community	genital	NAAT	536	1.12	0.23-2.01	high
Non-EU/EFT	A												
Representat	ive												
UK	Sonnenberg 2013 [40]	09/2010	08/2012	probability	representative	16-24 ³	register	urine	NAAT	992	0.10	0.00-0.30	low
Proxy other					-			- 	-				
UK	Oakeshott 2019 [60]	09/2016	10/2016	cluster	students	17.9 ⁴	community	genital	NAAT	267	0.00	0.00-0.70	high

ANC: antenatal care; AR: ano-rectal; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; PH: pharyngeal; RoB: risk of bias; UG: uro-genital.

1 median, unless indicated otherwise; 2 mean; 3 range; 4 comprises men and women (not reported separately).

Meta-analysis: NG-Young_women	Sampling date	Country	N					Weight	PE % [95% CI]
Peuchant 2015	2011	FR	165					9.39%	0.00 [0.00, 0.83]
Piñeiro 2016	2013	ES	596					12.84%	0.00 [0.00, 0.23]
Matteelli 2016	2013	ΙТ	1297	-				13.16%	0.00 [0.00, 0.11]
Silva 2021	2013	PT	536	F	∎1			9.01%	1.12 [0.23, 2.01]
Lopez-Corbeto 2021	2016	ES	81	-		•		── 1.20%	3.70 [0.00, 7.81]
Skaletz-Rorowski 2021	2017	DE	133	-	-			3.75%	1.50 [0.00, 3.57]
Klavs 2022	2017	SI	107	-	-			6.72%	0.00 [0.00, 1.28]
Dorado Criado 2021	2019	ES	136	-		•		2.30%	3.00 [0.16, 5.84]
Muñoz Santa 2022	2019	ES	599		—			6.47%	2.80 [1.47, 4.13]
Espies 2023	2022	ES	445	-	4			10.78%	0.45 [0.00, 1.07]
Sonnenberg 2013	2011	UK	992					12.95%	0.10 [0.00, 0.30]
Oakeshott 2019	2016	UK	267	-				11.44%	0.00 [0.00, 0.52]
$l^2 = 92.6\%$			5354	•				100%	0.51 [0.04, 0.99]
				i—	Ι	1	I		
				0.00	2.00	4.00	6.00	8.00	

Figure 31. Pooled estimates for gonorrhoea in young women, total

Pooled prevalence estimate

Figure 32. Pooled estimates for gonorrhoea in young women, representative of the general population

Meta-analysis: NG-Young_women representative	Sampling date	Country	N	w	/eight	PE % [95% CI]
Skaletz-Rorowski 2021	2017	DE	133	· · · · · · · · · · · · · · · · · · ·	2.27%	1.50 [0.00, 3.57]
Klavs 2022	2017	SI	107		5.71%	0.00 [0.00, 1.28]
Espies 2023	2022	ES	445		20.42%	0.45 [0.00, 1.07]
Sonnenberg 2013	2011	UK	992	■ + 7	71.61%	0.10 [0.00, 0.30]
l ² = 17.1%			1677	•	100%	0.20 [0.00, 0.51]
					٦	
					.00	
				Pooled prevalence estimate		

Figure 33. Pooled estimates for gonorrhoea in young women in antenatal care (proxy population)

Meta-analysis: NG-Young_women proxy (ANC)	Sampling Country date	N		Weight	PE % [95% CI]
Peuchant 2015	2011 FR	165	₽ 1	25.67%	0.00 [0.00, 0.83]
Piñeiro 2016	2013 ES	596		27.56%	0.00 [0.00, 0.23]
Lopez-Corbeto 2021	2016 ES	81		9.39%	3.70 [0.00, 7.81]
Dorado Criado 2021	2019 ES	136	F	14.36%	3.00 [0.16, 5.84]
Muñoz Santa 2022	2019 ES	599	⊢_∎_ _1	23.03%	2.80 [1.47, 4.13]
$I^2 = 89.7\%$		1577	-	100%	1.42 [0.00, 2.97]
		0	00 2.00 4.00 6.00 8.	1 00	
		0.	Pooled prevalence estimate		

Figure 34. Pooled estimates for gonorrhoea in young women, other proxy populations

Meta-analysis: NG-Young_women proxy (other)	Sampling date	Country	N		,	Weight	PE % [95% CI]
Matteelli 2016	2013	IT	1297	₽ -1		43.25%	0.00 [0.00, 0.11]
Silva 2021	2013	PT	536	۰ ۰		23.10%	1.12 [0.23, 2.01]
Oakeshott 2019	2016	UK	267	•		33.65%	0.00 [0.00, 0.52]
l ² = 80.9%			2100	_		100%	0.26 [0.00, 0.88]
				0.00 0.50 1.00	1.50 2.00	2.50	
				Pooled prevale	ence estimate	e	

Gonorrhoea in young men

Overall NG prevalence among young men is estimated to be 0.07% (95% CI 0.00–0.21) (see Table and Figure 35). Among young men representative of the young general population only, pooled prevalence is estimated to be 2.00% (95% CI 0.00–5.78, see Figure 36), with the lowest prevalence reported in Slovenia (0.00%; 95% CI 0.00–1.79) and the highest in Germany (9.70%; 95% CI 4.65–14.75). Among other young male proxy populations, pooled prevalence is estimated to be 0.45% (95% CI 0.00–1.66, see Figure 37).

Table 17. Prevalence estimates for gonorrhoea in young men

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age ¹	Setting	Specimen	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA							·	·			İ		
Representat	ive												
Spain	Espies 2023 [46]	09/2021	05/2022	convenience	representati ve	20.0 ^{2, 4}	community	urine	NAAT	166	0.60	0.00-1.78	high
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representati ve	18-24 ³	register	urine	NAAT	76	0.00	0.00-2.44	low
Germany	Skaletz- Rorowski 2021 [44]	12/2016	07/2018	convenience	representati ve	23.0 ⁴	community	any-site (AR/UR/PH)	NAAT	133	9.70	4.73–14.82	high
Proxy other													
Italy	Matteelli 2016 [57]	11/2012	03/2013	convenience	students	18.5 ²	community	urine	NAAT	762	0.00	0.00-0.25	high
Non-EU/EFT	A												
Representat	ive												
UK	Sonnenberg 2013 [40]	09/2010	08/2012	probability	representati ve	16-24 ³	register	urine	NAAT	840	0.10	0.00-0.35	low
Proxy other													
UK	Oakeshott 2019 [60]	09/2016	10/2016	cluster	students	17.9 ⁴	community	urine	NAAT	236	1.30	0.00-2.70	high

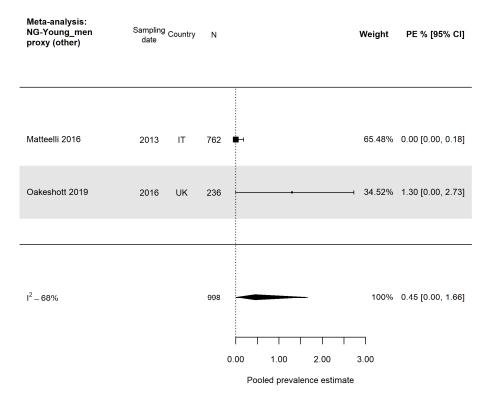
AR: ano-rectal; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; PH: pharyngeal; RoB: risk of bias; UG: uro-genital.

1 median, unless indicated otherwise

2 mean

3 range

4 comprises men and women (not reported separately).


Figure 35. Pooled estimates for gonorrhoea in young men, total

Meta-analysis: NG-Young_men	Sampling date	Country	N				Weight	PE % [95% CI]
Matteelli 2016	2013	IT	762				60.32%	0.00 [0.00, 0.18]
Skaletz-Rorowski 2021	2017	DE	133		Ļ		0.08%	9.70 [4.65, 14.75]
Klavs 2022	2017	SI	76	•			0.62%	0.00 [0.00, 1.79]
Espies 2023	2022	ES	166	 			1.44%	0.60 [0.00, 1.78]
Sonnenberg 2013	2011	UK	840	Þ			36.57%	0.10 [0.00, 0.33]
Oakeshott 2019	2016	UK	236				0.97%	1.30 [0.00, 2.73]
l ² = 0%			2213	•			100%	0.07 [0.00, 0.21]
				0.00 Poole	5.00 d preval	10.00 lence estim	15.00 ate	

Figure 36. Pooled estimates for gonorrhoea in young men, representative of the general population

Meta-analysis: NG-Young_men representative	Sampling date	Country	N				Weight	PE % [95% CI]
Skaletz-Rorowski 2021	2017	DE	133		ŀ		── 18.64%	9.70 [4.65, 14.75]
Klavs 2022	2017	SI	76	-			26.27%	0.00 [0.00, 1.79]
Espies 2023	2022	ES	166	₩			27.19%	0.60 [0.00, 1.78]
Sonnenberg 2013	2011	UK	840				27.90%	0.10 [0.00, 0.33]
l ² = 97.2%			1215	•			100%	2.00 [0.00, 5.78]
				0.00	l 5.00	ا 10.00	l 15.00	
				Pool	ed preval	ence estim	ate	

Populations of special interest

Gonorrhoea in men who have sex with men

The prevalence of NG is estimated to be 10.46% (95% CI 6.94–13.97) in MSM visiting STI clinics, 4.74% (95% CI 0.75–8.72) in MSM living with HIV, 8.99% (95% CI 5.31–12.66) in MSM on PrEP and 14.37% (95% CI 7.76–20.98) in MSM engaging in 'high-risk' sexual behaviour.

Table 18. Prevalence estimates for gonorrhoea in MSM

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age ¹	Setting	Specimen	Additional specimen tested	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
MSM visiting	STI clinics												
Netherlands	Druckler 2018 [61]	07/2016	12/2016	convenience	35.0	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	4 925	12.40	11.49–13.33	medium
Netherlands	Evers 2022 [62]	NR/2016	NR/2017	convenience	37.0	STI/GUM clinic	any-site	none	NAAT	161 275	10.80	10.65-10.95	medium
Portugal	Ribeiro 2019 [65]	01/2016	05/2018	convenience	31.0	STI/GUM clinic	any-site (AR/UG/PH)	UG, PH, AR	NAAT	1 489	10.75	9.17-12.32	high
Spain	Ayerdi Aguirrebengoa 2020 [64]	01/2016	12/2018	convenience	18.1 ²	STI/GUM clinic	any-site (AR/UR/PH)	UG, PH, AR	unclear	149	30.20	22.83-37.57	high
Netherlands	Achterbergh 2020 [66]	09/2017	12/2017	convenience	35.0	STI/GUM clinic	any-site (AR/UG/PH)	UG, PH, AR	NAAT	4 465	11.90	10.94-12.84	medium
Iceland	Hilmarsdottir 2021 [68]	10/2018	01/2019	convenience	NR	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	57	0.00	0.00-3.24	high
Spain	Hoyos- Mallecot 2022 [69]	11/2016	11/2019	convenience	34.0	STI/GUM clinic	any-site (AR/UR/PH)	none	NAAT	6 304	10.90	10.13-11.67	medium
Switzerland	Bigler 2023 [99]	01/2017	12/2019	convenience	NR	STI/GUM clinic	pooled (AR/UG/PH)	none	NAAT	647	3.40	2.00-4.80	medium
Germany	Jansen 2020 [70]	02/2018	07/2018	convenience	39.0	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	2 203	8.90	7.71–10.09	medium
France	Rahib 2022 [71]	04/2018	06/2018	convenience	30.0	dating app / social media	any-site (AR/UR/PH)	UR, PH, AR	NAAT	1 930	9.60	8.27-10.90	high
MSM HIV													
Germany	Spinner 2018 [72]	02/2016	08/2016	convenience	43.2	STI/GUM clinic	pooled (AR/UG/PH)	none	NAAT	296	6.80	3.90-9.62	high
France	Farfour 2021 [73]	09/2017	12/2017	convenience	47.0	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	291	6.89	3.97–9.78	high
MSM PrEP													
Belgium	Reyniers 2018 [74]	09/2015	06/2016	convenience	38.0	unclear	any-site (AR/UR/PH)	UR, PH, AR	NAAT	196	12.20	7.66–16.83	medium
Italy	Nozza 2022 [75]	05/2017	05/2022	convenience	34.5	STI/GUM clinic	pooled (AR/UG/PH)	none	NAAT/cu lture	624	5.20	3.40-6.86	medium
Switzerland	Hovaguimian 2022 [76]	04/2019	01/2020	convenience	40.0	STI/GUM clinic	pooled (AR/UG/PH)	none	NAAT	710	9.60	7.41–11.74	medium
Bulgaria	Pakov 2022 [77]	10/2020	08/2022	convenience	33.0	STI/GUM clinic	ano-rectal	none	NR	410	5.30	3.18-7.55	high

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age ¹	Setting	Specimen	Additional specimen tested	Test method	No. tested	РЕ (%)	95%-CI	RoB
Austria	Chromy 2023 [78]	07/2020	12/2021	convenience	33.8	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	131	16.00	9.75–22.31	high
MSM "high ri	isk″												
Switzerland	Schmidt 2020 [79]	01/2016	06/2017	convenience	33.0	STI/GUM clinic	pooled (AR/UG/PH)	none	NAAT	779	10.30	8.14-12.40	high
Italy	Foschi 2018 [80]	01/2017	11/2017	convenience	35.5 ²	STI/GUM clinic	ano-rectal	UR, PH	NAAT	165	27.20	20.48-34.07	high
Germany	Streeck 2022 [81]	06/2018	03/2019	convenience	33.0	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	1 043	10.10	8.24-11.89	medium
Poland	Szetela 2023_hr [82]	12/2019	12/2020	convenience	NR	STI/GUM clinic	any-site (AR/UR/PH)	UG, PH, AR	NAAT	103	18.62	10.96-25.94	high
Germany	Weidlich 2023 [83]	04/2021	07/2022	convenience	37.0	STI/GUM clinic	any-site (AR/UR/UG/ PH)	UR/UG, PH, AR	NAAT	236	8.50	4.92-12.03	high
MSM other													
Poland	Szetela 2023_lr ⁴ [82]	12/2019	12/2020	convenience	NR	STI/GUM clinic	any-site (AR/UR/PH)	UG, PH, AR	NAAT	64	17.46	7.94–26.43	high
Spain	De La Mora 2022 ⁵ [84]	03/2018	05/2019	convenience	39.0 ²	STI/GUM clinic	any-site or pooled (AR/UR/PH)	none	NAAT	156	23.00	16.47–29.69	high
Non-EU/EFT	A												
MSM visiting	STI clinics												
UK	Charin 2023 [85]	12/2016	01/2020	convenience	27.0	online sexual health service	any-site (AR/UR/PH)	UR, PH, AR	NAAT	5 040	4.50	3.93-5.08	high
UK	Ogaz 2019 [86]	01/2017	12/2017	convenience	NR	STI/GUM clinic	any-site	AR	NAAT or culture	128 772	9.00	8.84-9.16	medium
Georgia	Kevlishvili 2023 [87]	NR/2019	NR/2019	convenience	18-65 ³	STI/GUM clinic	any-site or pooled (AR/UG)	none	gram stain+ NAAT	1 698	18.40	16.53-20.22	medium
MSM HIV													
Türkiye	Taspinar Sen 2023 [88]	08/2018	02/2020	convenience	38.4 ²	STI/GUM clinic	urine	none	NAAT	106	0.94	0.00-2.78	high

AR: ano-rectal swab; GUM: genitourinary medicine; NAAT: nucleic acid amplification test; NR: not reported; PH: pharyngeal swab; RoB: risk of bias; STI: sexually transmitted infection; UG: urogenital swab; UR: urine.

1 median, unless indicated otherwise; 2 mean; 3 range; 4 MSM reporting sexual behaviour classified as 'low risk' by the study authors; 5 MSM engaging in chemsex.

Figure 38. Pooled estimates for gonorrhoea in MSM visiting STI clinics

Meta-analysis: NG-MSM other	Sampling date	Country	Ν	Weight PE % [95% CI]
Druckler 2018	2016	NL	4925	■ 7.88% 12.40 [11.48, 13.32]
Evers 2022	2016	NL	161275	■ 7.92% 10.80 [10.65, 10.95]
Ayerdi Aguirrebengoa 2020	2017	ES	149	المعالمة (1.58% 5.85% 30.20 [22.83, 37.57]
Achterbergh 2020	2017	NL	4465	■ 7.88% 11.90 [10.95, 12.85]
Ribeiro 2019	2017	PT	1489	10.75 [9.18, 12.32]
Bigler 2023	2018	СН	647	1∎ + 7.83% 3.40 [2.00, 4.80]
Jansen 2020	2018	DE	2203	6 7.85% 8.90 [7.71, 10.09]
Hoyos-Mallecot 2022	2018	ES	6304	■ 7.89% 10.90 [10.13, 11.67]
Rahib 2022	2018	FR	1930	H 7.84% 9.60 [8.29, 10.91]
Hilmarsdottir 2021	2018	IS	57	■→ 7.65% 0.00 [0.00, 2.38]
Ogaz 2019	2017	UK	128772	■ 7.92% 9.00 [8.84, 9.16]
Kevlishvili 2023	2018	GE	1698	+■+ 7.76% 18.40 [16.56, 20.24]
Charin 2023	2018	UK	5040	■ 7.91% 4.50 [3.93, 5.07]
l ² = 99.9%			318954	• 100% 10.46 [6.94, 13.97]
			0	0.00 10.00 20.00 30.00 40.00
				Dealed an ender a set in sta

Pooled prevalence estimate

Figure 39. Pooled estimates for gonorrhoea in MSM living with HIV

Meta-analysis: NG-MSM living with HIV	Sampling date	Country	Ν				Weight	PE % [95% CI]
Spinner 2018	2016	DE	296		ı		32.24%	6.80 [3.94, 9.66]
Farfour 2021	2017	FR	291				32.06%	6.89 [3.98, 9.80]
Taspinar Sen 2023	2019	TR	106				35.70%	0.94 [0.00, 2.78]
² = 86.8%			693				100%	4.74 [0.75, 8.72]
					I		1	
			0.	00	4.00	8.00		
				Pooled p	orevalen	ce estimate		

Figure 40. Pooled estimates for gonorrhoea in MSM on PrEP

Meta-analysis: NG-MSM receiving PrEP	Sampling date	Country	Ν					Weight	PE % [95% CI]
Reyniers 2018	2016	BE	196	ŀ				17.67%	12.20 [7.61, 16.79]
Hovaguimian 2022	2019	СН	710	F				22.49%	9.60 [7.44, 11.76]
Nozza 2022	2019	IT	624	⊢∎⊣				23.14%	5.20 [3.47, 6.93]
Chromy 2023	2021	AT	131		ı			14.25%	16.00 [9.72, 22.28]
Pakov 2022	2021	BG	410	⊨∎⊸				22.46%	5.30 [3.12, 7.48]
l ² = 89%			2071		-			100%	8.99 [5.31, 12.66]
			-	1	I	1	1		
			0.00	5.00 Poolec	10.00 I prevale	15.00 ence est		25.00	

Figure 41. Pooled estimates for gonorrhoea in MSM high risk

Meta-analysis: NG-MSM high risk	Sampling Country date	Ν	Weight PE % [95% Cl]
Schmidt 2020	2016 CH	779	⊢∎→ 21.78% 10.30 [8.17, 12.43]
Foschi 2018	2017 IT	165	⊷ 4 8.04% 27.20 [20.40, 34.00]
Streeck 2022	2018 DE	1043	⊢■→ 21.92% 10.10 [8.27, 11.93]
Szetela 2023_hr	2020 PL	103	• 17.33% 18.62 [11.13, 26.11]
Weidlich 2023	2021 DE	236	▶ ■ 20.94% 8.50 [4.95, 12.05]
$l^2 = 95.3\%$		2326	100% 14.37 [7.76, 20.98]
		-	
		0.00	10.00 20.00 30.00 40.00
			Pooled prevalence estimate

Gonorrhoea in sex workers

Among female sex workers, pooled NG prevalence is estimated to be 2.22% (95% CI 0.63–3.80) and 6.36% (95% CI 0.00–14.25) among male and transgender sex workers, see Table. One conference abstract was identified reporting a NG prevalence of 69.60% (95% CI 50.76–88.37) among mixed gender sex workers in the UK.

Table 19. Prevalence estimates for gonorrhoea in sex workers

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age ¹	Setting	Specimen	Additional specimen tested	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Female sex v	Female sex workers												
Portugal	Almeida 2020_f [89]	09/2015	09/2016	convenience	36.2 ^{2, 4}	outreach	any-site (AR/UR/PH)	UR, PH, AR	NAAT	74	10.80	3.74–17.89	high
Belgium	Coorevits 2018 [90]	06/2015	06/2016	convenience	33.0 ²	outreach	urine or genital	none	NAAT	299	3.30	1.31–5.38	medium
Netherlands	Druckler 2020_f [91]	01/2014	12/2015	convenience	28.0	health centre	rectal	UG, PH, AR	NAAT	1 217	1.40	0.74–2.06	medium
Netherlands	van Dulm 2020 [92]	01/2016	09/2016	convenience	28.0	community	genital	UG, PH, AR	NAAT	1 213	0.30	0.01-0.65	medium
Switzerland	Vernazza 2020 [93]	01/2016	06/2017	convenience	31.0	STI clinic	pooled (AR/UG/PH)	none	NAAT	490	4.90	2.99–6.81	medium
Belgium	Verougstraete 2020 [94]	02/2018	07/2019	convenience	NR	community	any-site (AR/UG/PH)	UG, PH, AR	NAAT	489	2.00	0.79–3.30	high
Switzerland	Vu 2020 [95]	04/2015	12/2016	convenience	18-60 ³	community	urine	none	NAAT	96	0.00	0.00-1.94	high
Male and tra	nsgender sex wo	orkers											
Portugal	Almeida 2020_m [89]	09/2015	09/2016	convenience	36.2 ^{2, 4}	outreach	any-site (AR/UR/PH)	UR, PH, AR	NAAT	12	0.00	0.00–14.30	high
Portugal	Almeida 2020_t [89]	09/2015	09/2016	convenience	36.2 ^{2, 4}	outreach	any-site (AR/UR/PH)	UR, PH, AR	NAAT	14	0.00	0.00-12.42	high
Netherlands	Druckler 2020_m [91]	01/2014	12/2015	convenience	28.0	health centre	rectal	UG, PH, AR	NAAT	70	10.00	2.97–17.03	medium
Netherlands	Druckler 2020_t [91]	01/2014	12/2015	convenience	39.0	health centre	rectal	UG, PH, AR	NAAT	15	0.00	0.00-11.65	medium
Spain	Ferrer 2022 [96]	10/2017	12/2018	convenience	33.0	community	any-site (AR/UR/PH)	UR, PH, AR	NAAT	147	19.20	12.70-25.40	high
Non-EU/EFTA													
Mixed gender sex workers													
UK	Sultan 2021 [97]	NR	NR	convenience	NR	outreach	any-site (AR/UG/PH)	UG, PH, AR	NAAT	23	69.60	50.76-88.37	high

AR: ano-rectal; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; PH: pharyngeal; RoB: risk of bias; STI: sexually transmissible infections; UG: uro-genital; UR: urine

1 median, unless indicated otherwise

2 mean

3 range

4 comprises male, female, and transgender sex workers (not reported separately).

Figure 42. Pooled estimates for gonorrhoea in female sex workers

Meta-analysis: NG-Sexworkers_f	Sampling date	Country	N	Weight PE % [95% Cl]				
Druckler 2020_f	2014	NL	1217	I 17.60% 1.40 [0.74, 2.06]				
Coorevits 2018	2015	BE	299	⊢■→ 13.96% 3.30 [1.26, 5.34]				
Vernazza 2020	2016	СН	490	⊢■→ 14.36% 4.90 [2.99, 6.81]				
Vu 2020	2016	СН	96	∎→ 15.83% 0.00 [0.00, 1.43]				
vanDulm 2020	2016	NL	1213	■ 18.01% 0.30 [0.00, 0.62]				
Almeida 2020_f	2016	PT	74	• 3.93% 10.80 [3.73, 17.87]				
Verougstraete 2020	2018	BE	489	⊢∎→ 16.30% 2.00 [0.75, 3.25]				
l ² = 93.6%			3878	➡ 100% 2.22 [0.63, 3.80]				
			0	.00 5.00 10.00 15.00 20.00				
	Pooled prevalence estimate							

Meta-analysis: NG-Sexworkers_m+t	Sampling Country date	N	Weight PE % [95% CI]
Druckler 2020_m	2014 NL	70	▶ 21.34% 10.00 [2.97, 17.03]
Druckler 2020_t	2014 NL	15	
Almeida 2020_m	2016 PT	12	17.70% 0.00 [0.00, 10.45]
Ferrer 2022	2018 ES	147	⊢22.03% 19.20 [12.85, 25.55]
Almeida 2020_t	216 PT	14	• 19.16% 0.00 [0.00, 9.08]
l ² = 79%		258	100% 6.36 [0.00, 14.25]
		0	.00 10.00 20.00 30.00
		U	.00 10.00 20.00 30.00 Pooled prevalence estimate

Gonorrhoea in people who inject drugs

No studies were identified reporting NG prevalence data for PWID.

3.5 Trichomoniasis prevalence estimates

The following table summarises the pooled trichomoniasis prevalence estimates for all study populations (prevalence estimates from individual studies are presented for populations or sub-groups where only one study was available). Details of the studies included and the meta-analyses are provided in the sub-chapters below.

Table 20. Prevalence estimates for trichomoniasis in all study populations

Population	Sub-group	No. studies	No. individuals	Pooled estimate [%]	95%-CI lower	95%-CI upper	I ²
Women	combined ¹	9	31 728	0.69	0.38	0.99	81.34
Women	representative	1	593	0.17	0.00	0.50	N/A
Women	proxy (ANC)	2	4 179	0.64	0.33	0.94	25.01
Women	proxy (other)	6	26 956	0.85	0.41	1.29	79.47
Men	combined ¹	3	1 103	0.00	0.00	0.21	0.00
Men	representative	1	430	0.00	0.00	0.40	N/A
Men	proxy (other)	2	673	0.00	0.00	0.28	0.00
Young women	combined ¹	5	1 823	0.64	0.00	1.40	79.57
Young women	representative	2	552	0.20	0.00	0.62	0.00
Young women	proxy (ANC)	2	735	2.04	0.61	3.46	20.28
Young women	proxy (other)	1	536	0.20	0.00	0.55	N/A
Young men	representative	2	242	0.00	0.00	0.75	0.00
MSM	visiting STI clinics	1	2 203	0.10	0.00	0.22	N/A
MSM	`high-risk'	2	1 822	1.54	0.00	4.67	96.06
MSM	HIV	1	106	0.94	0.00	2.78	N/A
Sex workers	female	2	786	8.97	6.03	11.91	53.03

ANC: antenatal care; HIV: human immunodeficiency virus; STI: sexually transmissible infection. 1 prevalence estimates combining both, representative studies and studies in proxy populations.

General population

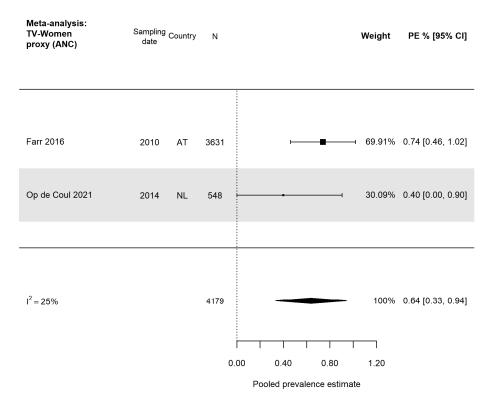
Trichomoniasis in women

Overall prevalence of TV was estimated to be 0.69% (95% CI 0.38–0.99) among women (see Table 21 and Figure 44). No studies were identified reporting on prevalence data for women representative of the general population only. Among women in antenatal care, pooled prevalence of TV is based on two studies and is estimated to be 0.64 (95% CI 0.33–0.94, see Figure 45), with the lowest prevalence reported in the Netherlands (0.40%; 95% CI 0.00–0.90) and the highest in Austria (0.74%; 95% CI 0.46–1.02). In female proxy populations, including healthy women attending routine gynaecological check-ups, cervical and/or breast cancer screening, women attending GPs and healthcare website users, and female military personnel, pooled prevalence of TV is estimated to be 0.85% (95% CI 0.41–1.29), see Figure 46.

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age1	Setting	Specimen	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Representati	Representative												
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representative	18-49 ³	register	urine	NAAT	593	0.20	0.00-0.50	medium
Proxy ANC													
Netherlands	Op de Coul 2021 [27]	NR/2012	NR/2016	convenience	ANC	27.0	clinical	genital	NAAT	548	0.40	0.00-0.87	high
Austria	Farr 2016 [100]	01/2005	01/2015	convenience	ANC	30.4 ²	clinical	genital	NR	3 631	0.74	0.46-1.02	high
Proxy other													
Spain	Bolumburu 2020 [101]	01/2013	12/2017	convenience	medical centres and gynaecologists	38.8 ²	clinical	genital	NAAT	23 173	0.80	0.68–0.91	high
Italy	Camporiondo 2016 [35]	01/2013	12/2013	convenience	breast cancer screening	49.0	clinical	genital	NAAT	309	1.30	0.03–2.55	high
Italy	Leli 2016 [102]	01/2015	10/2015	convenience	outpatient clinic	32.0	outpatient	genital	NAAT	1 487	1.30	0.71–1.85	high
Greece	Parthenis 2018 [34]	10/2015	10/2016	convenience	routine cervical screening	33.2 ²	clinical	genital	NAAT	345	0.00	0.00–0.54	high
Portugal	Silva 2021 [98]	01/2010	12/2016	convenience	students	22.0 ²	community	genital	NAAT	680	1.00	0.27-1.79	high
Non-EU/EFT	A												
Proxy other													
North Macedonia	Albig 2023 [42]	NR/2014	NR/2018	convenience	gynaecology and obstetrics department	NR	clinical	NR	NAAT	962	1.20	0.55–1.95	high

Table 21. Prevalence estimates for trichomoniasis in the general female population

ANC: antenatal care; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; RoB: risk of bias.


1 median, unless indicated otherwise 2 mean

3 range.

Figure 44. Pooled estimates for trichomoniasis in women, total

Meta-analysis: TV-Women	Sampling date	Country	Ν				Weight	PE % [95% Cl]
Albig 2023	2016	MK	962	⊢		i	8.75%	1.20 [0.50, 1.90]
Farr 2016	2010	AT	3631	H	➡		14.47%	0.74 [0.46, 1.02]
Camporiondo 2016	2013	IT	309	,			→ 4.27%	1.30 [0.04, 2.56]
Silva 2021	2013	PT	680		-		8.10%	1.00 [0.24, 1.76]
Op de Coul 2021	2014	NL	548		-		11.31%	0.40 [0.00, 0.90]
Bolumburu 2020	2015	ES	23173	ŀ	₩ H		16.12%	0.80 [0.69, 0.91]
Leli 2016	2015	IT	1487				10.39%	1.30 [0.73, 1.87]
Parthenis 2018	2016	GR	345	•			12.80%	0.00 [0.00, 0.40]
Klavs 2022	2017	SI	593	⊨∎1			13.79%	0.20 [0.00, 0.53]
$l^2 = 81.3\%$			31728	-			100%	0.69 [0.38, 0.99]
					1			
			0	.00	1.00	2.00	3.00	
				Pool	ed preva	lence estim	ate	

Figure 45. Pooled estimates for trichomoniasis in women in antenatal care (proxy population)

58

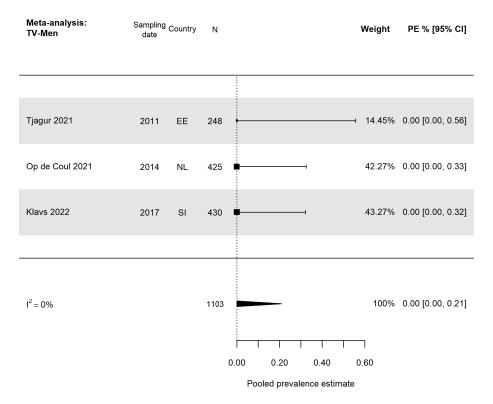
Meta-analysis: TV-Women proxy (other)	Sampling date	Country	N		Weight	PE % [95% CI]
Albig 2023	2016	МК	962	⊢ 1	15.20%	1.20 [0.50, 1.90]
Camporiondo 2016	2013	IT	309		8.17%	1.30 [0.04, 2.56]
Silva 2021	2013	PT	680	⊢−−−− I	14.26%	1.00 [0.24, 1.76]
Bolumburu 2020	2015	ES	23173	⊢ ∎4	24.34%	0.80 [0.69, 0.91]
Leli 2016	2015	IT	1487	⊢	17.48%	1.30 [0.73, 1.87]
Parthenis 2018	2016	GR	345	—	20.55%	0.00 [0.00, 0.40]
$l^2 = 79.5\%$			26956	-	100%	0.85 [0.41, 1.29]
			0.	00 1.00 2.00 Pooled prevalence estimat	3.00	

Figure 46. Pooled estimates for trichomoniasis in women, other proxy populations

Trichomoniasis in men

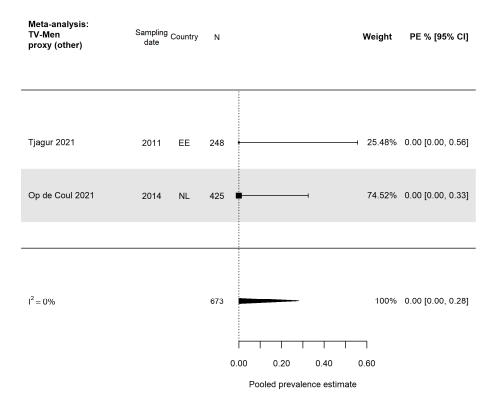
Overall prevalence of TV was estimated to be 0.00% (95% CI 0.00–0.21) among men (see Table 22Table and Figure 47). Only one study was identified for men representative of the general population, reporting a prevalence of 0.00% (95% CI 0.00–0.44, see Table 22). Based on two studies among male proxy populations, including male partners of women in ANC, pooled TV prevalence is estimated to be 0.00% (95% CI 0.00–0.28, see Figure 48).

Table 22. Prevalence estimates for trichomoniasis in the general male population


Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age ¹	Setting	Specimen	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Representati	ve												
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representative	18-49 ³	register	urine	NAAT	430	0.00	0.00-0.44	medium
Proxy other													
Netherlands	Op de Coul 2021 [27]	NR/2012	NR/2016	convenience	partners of women in ANC	29.0	clinical	urine	NAAT	425	0.00	0.00-0.44	high
Estonia	Tjagur 2021 [43]	01/2010	12/2012	convenience	partners of women in ANC	31.8	clinical	urine	NAAT	248	0.00	0.00-0.76	medium

ANC: antenatal care; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; RoB: risk of bias.

1 median, unless indicated otherwise


2 mean

3 range.

Figure 47. Pooled estimates for trichomoniasis in men, total

Figure 48. Pooled estimates for trichomoniasis in men, other proxy populations

Trichomoniasis in young women

Overall prevalence of TV among young women is estimated to be 0.64% (95% CI 0.00–1.40, Table 23). Among young women representative of the general population of young people, prevalence is estimated to be 0.20% (95% CI 0.00– 0.62, Figure 12Figure), and among young women in antenatal care 2.04% (95% CI 0.61–3.46, Figure 13).

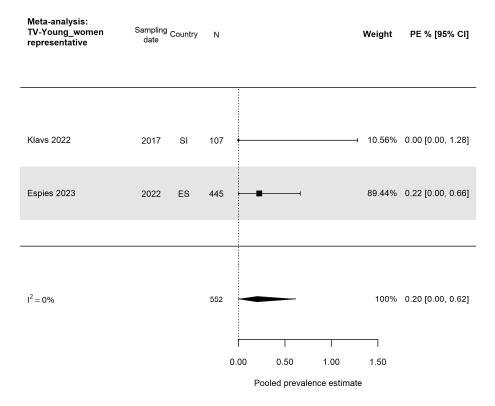
Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age1	Setting	Specimen	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Representati	ve												
Spain	Espies 2023 [46]	09/2021	05/2022	convenience	representative	20.0 ^{2, 4}	community	urine	NAAT	445	0.22	0.00–0.66	high
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representative	18–24 ³	register	urine	NAAT	107	0.00	0.00-1.74	medium
Proxy ANC													
Spain	Dorado Criado 2021 [49]	11/2018	06/2019	convenience	ANC	22.0	clinical	urine	NAAT	136	3.60	0.51–6.84	high
Spain	Munoz Santa 2022 [50]	01/2019	10/2020	convenience	ANC	<25.0	NR	genital	NAAT	599	1.70	0.64–2.70	high
Proxy other													
Portugal	Silva 2021 [98]	01/2010	12/2016	convenience	students	15–25 ³	community	genital	NAAT	536	0.19	0.00-0.55	high

Table 23. Prevalence estimates for trichomoniasis in young women

ANC: antenatal care; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; RoB: risk of bias.

1 median, unless indicated otherwise

2 mean


3 range

4 comprises men and women (not reported separately).

Figure 49. Pooled estimates for trichomoniasis in young women, total

Meta-analysis: TV-Young_women	Sampling ₍ date	Country	Ν		Weight	PE % [95% CI]			
Silva 2021	2013	PT	536	e -1	29.51%	0.19 [0.00, 0.55]			
Klavs 2022	2017	SI	107		16.76%	0.00 [0.00, 1.28]			
Dorado Criado 2021	2019	ES	136	·	→ 4.93%	3.60 [0.44, 6.76]			
MunozSanta 2022	2019	ES	599	⊢_ ∎i	20.15%	1.70 [0.67, 2.73]			
Espies 2023	2022	ES	445	- 1	28.64%	0.22 [0.00, 0.66]			
$ ^2 = 79.6\%$			1823	•	100%	0.64 [0.00, 1.40]			
				0.00 2.00 4.00 6.00	0.00				
	Pooled prevalence estimate								

Figure 50. Pooled estimates for trichomoniasis in young women, representative of the general population

Figure 51. Pooled estimates for trichomoniasis in young women in antenatal care (proxy population)

Meta-analysis: TV-Young_women proxy (ANC)	Sampling _{Country} date		Ν					Weight	PE % [95% CI]
Dorado Criado 2021	2019	ES	136			•		17.73%	3.60 [0.44, 6.76]
MunozSanta 2022	2019	ES	599	⊦_∎				82.27%	1.70 [0.67, 2.73]
² = 20.3%			735					100%	2.04 [0.61, 3.46]
1 = 20.3%			0.0			4.00	6.00 estimate	8.00	2.04 [0.01, 3.40]

Trichomoniasis in young men

Based on the two studies among young men (both representative) conducted in Spain and Slovenia, pooled TV prevalence is estimated to be 0.00% (95% CI 0.00–0.75) (see Table 24 and Figure 53).

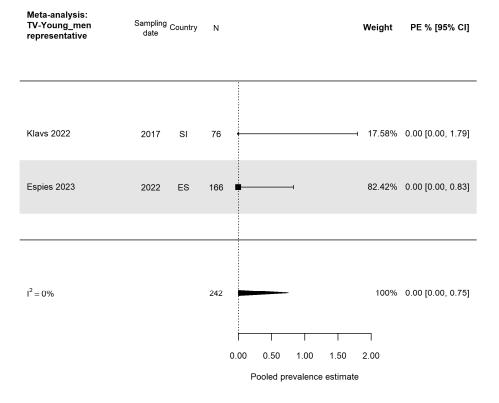
Table 24. Prevalence estimates for trichomoniasis in young men

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age ¹	Setting	Specimen	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Representati	ve												
Spain	Espies 2023 [46]	09/2021	05/2022	convenience	representative	20.0 ^{2, 4}	community	urine	NAAT	166	0.00	0.00-1.13	high
Slovenia	Klavs 2022 [22]	10/2016	07/2017	probability	representative	18-24 ³	register	urine	NAAT	76	0.00	0.00–2.44	high

NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; RoB: risk of bias.

1 median, unless indicated otherwise

2 mean


3 range

4 comprises men and women (not reported separately).

Figure 52. Pooled estimates for trichomoniasis in young men, total

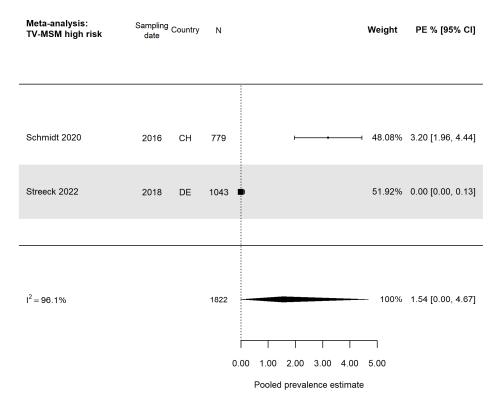
Meta-analysis: TV-Young_men	Sampling date	Country	N					Weight	PE % [95% CI]
Klavs 2022	2017	SI	76					⊣ 17.58%	0.00 [0.00, 1.79]
Espies 2023	2022	ES	166	-		-		82.42%	0.00 [0.00, 0.83]
2								400%	0.0010.00.0.751
$I^2 = 0\%$			242						0.00 [0.00, 0.75]
				0.00	0.50	ı 1.00	1.50	2.00	
				F	Pooled pr	evalence	estimate	е	

Figure 53. Pooled estimates for trichomoniasis in young men, representative of the general population

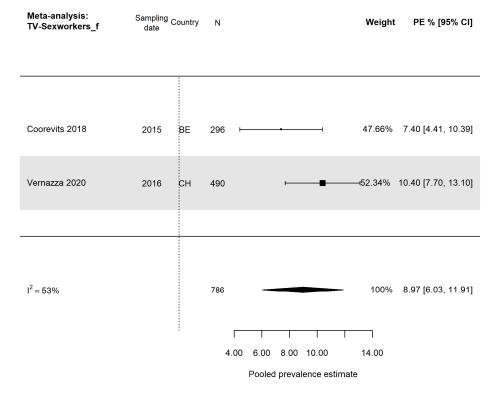
Populations of special interest

Trichomoniasis in men who have sex with men

Few studies investigated the prevalence of TV in MSM (see Table 25). The prevalence of TV is estimated to be 0.10% (95% CI 0.00–0.22) in MSM visiting STI clinics, based on one study from Germany, 0.94% (95% CI 0.00–2.78) in MSM living with HIV, based on one study from Türkiye and 1.54% (95% CI 0.00–4.67) in MSM engaging in 'high-risk' sexual behaviour, based on one study from Germany and one study from Switzerland (see Figure 54).


Table 25. Prevalence estimates for trichomoniasis in MSM

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age ¹	Setting	Specimen	Additional specimen tested	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
MSM visiting	STI clinics												
Germany	Jansen 2020 [70]	02/2018	07/2018	convenience	39.0	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	2 203	0.10	0.00-0.22	medium
MSM "high ri	sk″												
Germany	Streeck 2022 [81]	06/2018	03/2019	convenience	33.0	STI/GUM clinic	any-site (AR/UR/PH)	UR, PH, AR	NAAT	1 043	0.00	0.00-0.18	medium
Switzerland	Schmidt 2020 [79]	01/2016	06/2017	convenience	33.0	STI/GUM clinic	pooled (AR/UG/PH)	none	NAAT	779	3.20	1.97-4.45	high
Non-EU/EFT	A												
MSM HIV													
Türkiye	Taspinar Sen 2023 [88]	08/2018	02/2020	convenience	38.4 ²	STI/GUM clinic	urine	none	NAAT	106	0.94	0.00-2.78	high


AR: ano-rectal swab; GUM: genitourinary medicine; NAAT: nucleic acid amplification test; NR: not reported; PH: pharyngeal swab; RoB: risk of bias; STI: sexually transmitted infection; UG: urogenital swab; UR: urine.

1 median, unless indicated otherwise 2 mean.

Figure 54. Pooled estimates for trichomoniasis in high-risk MSM

Figure 55. Pooled estimates for trichomoniasis in female sex workers

Trichomoniasis in sex workers

Among female sex workers, pooled TV prevalence is estimated to be 8.97% (95% CI 6.03–11.91, see Figure 55). No studies were identified reporting TV prevalence data for male and transgender sex workers.

Table 26. Prevalence estimates for trichomoniasis in sex workers

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age ¹	Setting	Specimen	Additional specimen tested	Test method	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Female sex v	vorkers												
Belgium	Coorevits 2018 [90]	06/2015	06/2016	convenience	33.0 ²	outreach	urine or genital	none	NAAT	296	7.40	4.44-10.42	high
Switzerland	Vernazza 2020 [93]	01/2016	06/2017	convenience	31.0	STI clinic	pooled (AR/UG/PH)	none	NAAT	490	10.40	7.70-13.11	medium

AR: ano-rectal; NAAT: nucleic acid amplification test; NR: not reported; PE: prevalence estimate; PH: pharyngeal; RoB: risk of bias; STI: sexually transmissible infections; UG: uro-genital.

1 median, unless indicated otherwise 2 mean 3 range.

Trichomoniasis in people who inject drugs

No studies were identified reporting TV prevalence data for PWID.

3.6 Syphilis prevalence estimates

The following table summarises the pooled syphilis prevalence estimates for all study populations (prevalence estimates from individual studies are presented for populations or sub-groups where only one study was available). Details of the studies included and the meta-analyses are provided in the sub-chapters below.

Population	Sub-group	No. studies	No. individuals	pooled estimate [%]	95%-CI lower	95%-CI upper	I ²
Women	combined ¹	8	249 945	0.14	0	0.29	99.67
Women	proxy (ANC)	7	249 600	0.16	0	0.33	99.77
Women	proxy (other)	1	345	0.00	0.00	0.54	N/A
Young women	proxy (ANC)	1	596	0.00	0.00	0.32	N/A
MSM	visiting STI clinics	14	310 227	6.53	3.2	9.86	99.95
MSM	"high risk"	4	2 090	5.21	1.44	8.98	94.42
MSM	HIV	4	780	14.36	1.1	27.63	98.39
MSM	PrEP	5	2 096	6.48	3.95	9.02	81.89
Sex workers	female	6	3 345	1.75	0.04	3.46	92.98
Sex workers	male+trans	4	125	22.09	5.14	39.03	77.29
PWID	_	2	483	1.56	0.45	2.67	0

Table 27. Prevalence estimates for syphilis in all study populations

ANC: antenatal care; HIV: human immunodeficiency virus; PrEP: pre-exposure prophylaxis; STI: sexually transmissible infection.

1 prevalence estimates combining both, representative studies and studies in proxy populations.

General population

Syphilis in women

Overall prevalence of TP was estimated to be 0.14% (95% CI 0.00–0.29) among women (see Table 28 and Figure 56). No studies were identified reporting on prevalence data for women representative of the general population, or proxy populations. Among women in antenatal care, pooled prevalence of TP is estimated to be 0.16% (95% CI 0.00–0.33, see Figure 57), with the highest prevalence reported in Romania (0.92%; 95% CI 0.32–1.52).

Syphilis in men

No studies were identified reporting TP prevalence data among men in the general population or proxy populations.

Syphilis in young women

One study was identified (see Table 29) conducted among young women in antenatal care, reporting a TP prevalence of 0.00% (95% CI 0.00–0.32).

Syphilis in young men

No studies were identified reporting TP prevalence data for young men.

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age ¹	Setting	Specimen	Test method⁵	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Proxy ANC													
Hungary	Balla 2018 [103]	01/2016	12/2016	convenience	ANC	NR	outpatient	blood	dual	17 257	0.31	0.22-0.39	high
Romania	Manolescu 2019 [104]	07/2017	09/2017	convenience	ANC	29.0 ^{2, 4} , 15-47 ³	clinical	blood	dual	982	0.92	0.32-1.51	high
Spain	Piñeiro 2016 [28]	01/2011	12/2014	convenience	ANC	33.0	clinical	blood	dual	11 687	0.00	0.00-0.02	high
Poland	Radon- Pokracka 2017 [105]	12/2015	02/2016	convenience	ANC	NR	clinical	NR	NR	465	0.00	0.00-0.40	high
Netherlands	RIVM 2023 [106]	01/2021	12/2021		ANC	NR	NR	blood	NR	176 460	0.01	0.01-0.01	high
Italy	Dalmartello 2019 [107]	NR/2007	NR/2014	convenience	ANC	32.0	clinical	blood	single	38 441	0.29	0.24-0.34	high
Proxy other													
Greece	Parthenis 2018 [34]	10/2015	10/2016	convenience	routine cancer screening	33.2 ²	clinical	genital	single	345	0.00	0.00-0.54	high
Non-EU/EFT	A												
Proxy ANC													
Türkiye	Ensari 2015 [108]	01/2014	06/2014	convenience	ANC	26.5 ²	clinical	blood	dual	4 308	0.02	0.00-0.07	high

Table 28. Prevalence estimates for syphilis in the general female population

ANC: antenatal care; NR: not reported; PE: prevalence estimate; RoB: risk of bias.

1 median, unless indicated otherwise

2 mean

3 range

4 positive individuals only

5' dual' indicates that at least two independent and different tests were used to ascertain TP infection/single' indicates that diagnosis of TP infection was based on a single test.

Figure 56. Pooled estimates for syphilis in women, total

Meta-analysis: TP-Women	Sampling date	Country	Ν	Weight PE % [95% Cl]
Dalmartello 2019	2010	IT	38441	ا∎ 15.50% 0.29 [0.24, 0.34]
Piñeiro 2016	2013	ES	11687	15.79% 0.00 [0.00, 0.01]
Parthenis 2018	2016	GR	345	7.62% 0.00 [0.00, 0.40]
Balla 2018	2016	HU	17257	⊢■→ 15.11% 0.31 [0.23, 0.39]
Radon-Pokracka 2017	2016	PL	465	9.92% 0.00 [0.00, 0.30]
Manolescu 2019	2017	RO	982	·
RIVM 2023	2021	NL	176460	■ 15.80% 0.01 [0.01, 0.01]
Ensari 2015	2014	TR	4308	15.59% 0.02 [0.00, 0.07]
l ² =99.7%			249945	► 100% 0.14 [0.00, 0.29]
			0.	00 0.50 1.00 1.50 2.00 Pooled prevalence estimate

Figure 57. Pooled estimates for syphilis in women in antenatal care (proxy population)

Meta-analysis: TP-Women proxy (ANC)	Sampling date	Country	N	Weight PE % [95% CI]
Dalmartello 2019	2010	IT	38441	■ 16.54% 0.29 [0.24, 0.34]
Piñeiro 2016	2013	ES	11687	● 16.78% 0.00 [0.00, 0.01]
Balla 2018	2016	HU	17257	+■+ 16.19% 0.31 [0.23, 0.39]
Radon-Pokracka 2017	2016	PL	465	■ 11.35% 0.00 [0.00, 0.30]
Manolescu 2019	2017	RO	982	• 5.74% 0.92 [0.32, 1.52]
RIVM 2023	2021	NL	176460	■ 16.79% 0.01 [0.01, 0.01]
Ensari 2015	2014	TR	4308	16.61% 0.02 [0.00, 0.07]
l ² = 99.8%			249600	100% 0.16 [0.00, 0.33]
			0	.00 0.50 1.00 1.50 2.00
				Pooled prevalence estimate

Table 29. Prevalence estimates for syphilis in young women

Country	Author year	Sampling period start	Sampling period end	Sampling method	Population details	Age ¹	Setting	Specimen	Test method ²	No. tested	PE (%)	95%-CI	RoB
EU/EFTA													
Proxy ANC													
Spain	Piñeiro 2016 [28]	01/2011	12/2014	convenience	ANC	<25.0	clinical	blood	dual	596	0.00	0.00-0.32	high

ANC: antenatal care; NR: not reported; PE: prevalence estimate; RoB: risk of bias.

1 median, unless indicated otherwise

2 'dual' indicates that at least two independent and different tests were used to ascertain TP infection/single' indicates that diagnosis of TP infection was based on a single test.

Populations of special interest

Syphilis in men who have sex with men

The prevalence of TP is estimated to be 6.53% (95% CI 3.20–9.86) in MSM visiting STI clinics, 14.36% (95% CI 1.10–27.63) in MSM living with HIV (see Figure 59), 6.48% (95% CI 3.95–9.02) in MSM on PrEP (see Figure 59) and 5.21% (95% CI 1.44–8.98) in MSM engaging in 'high-risk' sexual behaviour (see Table 30 and Figure 61).

Syphilis in sex workers

Among female sex workers, pooled TP prevalence is estimated to be 1.75% (95% CI 0.04–3.46) and 22.09% (95% CI 5.14–39.03) among male and transgender sex workers. TP prevalence among female sex workers who inject drugs was found to be 7.80% (95% CI 1.81–13.78), based on a Czech study; and one conference abstract was identified reporting a TP prevalence of 26.10% (95% CI 8.14–44.03) among mixed gender sex workers in the UK (see Table 31, Figure 62 and Figure 63).

Table 30. Prevalence estimates for syphilis in MSM

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age ¹	Setting	Specim en	Additional specimen tested	Test method⁴	No. tested	PE (%)	95%-CI	RoB
EU/EFTA													
MSM visiting	STI clinics												
Netherlands	Druckler 2018 [61]	07/2016	12/2016	convenience	35.0	STI/GUM clinic	blood	none	single	4 925	3.00	2.53-3.48	high
Netherlands	Evers 2022 [62]	NR/2016	NR/2017	convenience	37.0	STI/GUM clinic	NR	none	NR	161 275	2.70	2.62-2.78	high
Spain	Ayerdi Aguirrebengoa 2020 [64]	01/2016	12/2018	convenience	18.1 ²	STI/GUM clinic	NR	none	unclear	149	10.10	5.24-14.90	high
Netherlands	Achterbergh 2020 [66]	09/2017	12/2017	convenience	35.0	STI/GUM clinic	blood	none	NR	4 455	3.60	3.05-4.14	high
Croatia	Gasbarrini 2021 [109]	05/2018	05/2018	convenience	NR	STI/GUM clinic	blood	none	single	144	2.08	0.00-4.42	high
Spain	Hoyos- Mallecot 2022 [69]	11/2016	11/2019	convenience	34.0	STI/GUM clinic	blood	none	dual	6 256	3.60	3.14-4.06	medium
Switzerland	Bigler 2023 [99]	01/2017	12/2019	convenience	NR	STI/GUM clinic	blood	none	dual	647	4.60	3.02-6.26	medium
France	Rahib 2022 [71]	04/2018	06/2018	convenience	30.0	dating app/social media	blood	none	single	1 062	12.20	10.27-14.21	high
Spain	Fernandez- Lopez 2022_ES	08/2018	11/2019	convenience	30.0	STI/GUM clinic	blood	none	single	103	2.90	0.00-6.16	high
Latvia	Fernandez- Lopez 2022_LV	08/2018	11/2019	convenience	30.0	STI/GUM clinic	blood	none	single	150	6.70	2.67–10.66	high
Slovenia	Fernandez- Lopez 2022_SI [110]	08/2018	11/2019	convenience	30.0	STI/GUM clinic	blood	none	NR	141	2.80	0.10-5.58	high
MSM HIV													
Germany	Spinner 2018 [72]	02/2016	08/2016	convenience	43.2	STI/GUM clinic	blood	none	NR	296	5.07	2.57-7.57	high
France	Farfour 2021 [73]	09/2017	12/2017	convenience	47.0	STI/GUM clinic	blood	none	dual	291	1.68	0.23-3.21	high
MSM PrEP													
Belgium	Reyniers 2018 [74]	09/2015	06/2016	convenience	38.0	unclear	blood	none	dual	200	7.50	3.85-11.15	medium
Italy	Nozza 2022 [75]	05/2017	05/2022	convenience	34.5	STI/GUM clinic	blood	none	NR	624	4.60	3.00-6.30	high

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age ¹	Setting	Specim en	Additional specimen tested	Test method ⁴	No. tested	PE (%)	95%-CI	RoB
Switzerland	Hovaguimian 2022 [76]	04/2019	01/2020	convenience	40.0	STI/GUM clinic	blood	none	dual	731	3.70	2.33-5.06	medium
Bulgaria	Pakov 2022 [77]	10/2020	08/2022	convenience	33.0	STI/GUM clinic	blood	none	unclear	410	10.30	7.31–13.18	high
Austria	Chromy 2023 [78]	07/2020	12/2021	convenience	33.8	STI/GUM clinic	blood	none	NR	131	8.00	3.09-12.18	high
MSM "high ri	sk″												
Switzerland	Schmidt 2020 [79]	01/2016	06/2017	convenience	33.0	STI/GUM clinic	blood	none	dual	779	1.70	0.77-2.57	high
Italy	Foschi 2018 [80]	01/2017	11/2017	convenience	35.5 ²	STI/GUM clinic	blood	none	dual	165	10.30	5.66-14.94	medium
Germany	Streeck 2022 [81]	06/2018	03/2019	convenience	33.0	STI/GUM clinic	blood	none	dual	1 043	3.50	2.42-4.67	medium
Poland	Szetela 2023_hr [82]	12/2019	12/2020	convenience	NR	STI/GUM clinic	blood	none	dual	103	7.76	2.60-12.94	high
MSM other													
Poland	Szetela 2023_lr ⁵ [82]	12/2019	12/2020	convenience	NR	STI/GUM clinic	blood	none	dual	64	3.12	0.00-7.39	high
Non-EU/EFT/	A												
MSM visiting	STI clinics												
Georgia	Kevlishvili 2023 [87]	NR/2019	NR/2019	convenience	18-65 ³	STI/GUM clinic	blood	none	dual	1 698	25.30	23.26-27.39	medium
Ukraine	Fernandez- Lopez 2022_UA [110]	08/2018	11/2019	convenience	30.0	STI/GUM clinic	blood	none	single	450	9.80	7.03–12.52	high
UK	Ogaz 2019 [86]	01/2017	12/2017	convenience	NR	STI/GUM clinic	blood	none	NR	128 772	2.70	2.61-2.79	high
MSM HIV													
Türkiye	Koksal 2020 [111]	03/2018	06/2018	convenience	NR	STI/GUM clinic	blood	none	dual	87	28.70	19.23-38.24	high
Türkiye	Taspinar Sen 2023 [88]	08/2018	02/2020	convenience	38.4 ²	STI/GUM clinic	blood	none	unclear	106	24.53	16.34-32.72	high

GUM: genitourinary medicine; NR: not reported; RoB: risk of bias; STI: sexually transmitted infection. 1 median, unless indicated otherwise; 2 mean; 3 range; 4 'dual' indicates that at least two independent and different tests were used to ascertain TP infection/'single' indicates that diagnosis of TP infection was based on a single test; 5 MSM reporting sexual behaviour classified as 'low-risk' by the study authors.

Figure 58. Pooled estimates for syphilis in MSM visiting STI clinics

Meta-analysis: TP-MSM other	Sampling date	Country	Ν	Weight PE % [95% CI]
Druckler 2018	2016	NL	4925	■ 7.40% 3.00 [2.52, 3.48]
Evers 2022	2016	NL	161275	■ 7.41% 2.70 [2.62, 2.78]
Ayerdi Aguirrebengoa 2020	2017	ES	149	→ 6.41% 10.10 [5.27, 14.93]
Achterbergh 2020	2017	NL	4455	■ 7.39% 3.60 [3.05, 4.15]
Bigler 2023	2018	СН	647	+■→ 7.28% 4.60 [2.98, 6.22]
Hoyos-Mallecot 2022	2018	ES	6256	■ 7.40% 3.60 [3.14, 4.06]
Rahib 2022	2018	FR	1062	
Gasbarrini 2021	2018	HR	144	7.15% 2.08 [0.00, 4.41]
Fernandez-Lopez 2022_ES	2019	ES	103	6.92% 2.90 [0.00, 6.15]
Fernandez-Lopez 2022_LV	2019	LV	150	⊢−− 6.70% 6.70 [2.71, 10.69]
Fernandez-Lopez 2022_SI	2019	SI	141	→ 7.06% 2.80 [0.06, 5.54]
Ogaz 2019	2017	UK	128772	■ 7.41% 2.70 [2.61, 2.79]
Kevlishvili 2023	2019	GE	1698	⊢■→7.20% 25.30 [23.23, 27.37]
Fernandez-Lopez 2022_UA	2019	UA	450	⊢■→ 7.05% 9.80 [7.06, 12.54]
l ² = 99.9%			310227	→ 100% 6.53 [3.20, 9.86]
			0	.00 10.00 20.00 30.00
				Pooled prevalence estimate

Pooled prevalence estimate

Figure 59. Pooled estimates for syphilis in MSM living with HIV

Meta-analysis: TP-MSM living with HIV	Sampling date	Country	N	Weight PE % [95% CI]
Spinner 2018	2016	DE	296	⊢■→ 26.24% 5.07 [2.57, 7.57]
Farfour 2021	2017	FR	291	■ 26.40% 1.68 [0.19, 3.17]
Koksal 2020	2018	TR	87	<u>← 2</u> 3.31% 28.70 [19.19, 38.21]
Taspinar Sen 2023	2019	TR	106	► - 24.05% 24.53 [16.34, 32.72]
$l^2 = 98.4\%$			780	100% 14.36 [1.10, 27.63]
			C	0.00 10.00 20.00 30.00 40.00
				Pooled prevalence estimate

Figure 60. Pooled estimates for syphilis in MSM on PrEP

Meta-analysis: TP-MSM receiving PrEP	Sampling date	Country	Ν			Weight	PE % [95% CI]
Reyniers 2018	2016	BE	200	ا		17.18%	7.50 [3.85, 11.15]
Hovaguimian 2022	2019	СН	731	⊨-∎1		24.80%	3.70 [2.33, 5.07]
Nozza 2022	2019	IT	624	⊢-∎ 1		24.00%	4.60 [2.95, 6.25]
Chromy 2023	2021	AT	131	ı		14.36%	8.00 [3.45, 12.55]
Pakov 2022	2021	BG	410	H		⊣19.67%	10.30 [7.36, 13.24]
l ² = 81.9%			2096		Ba-	100%	6.48 [3.95, 9.02]
			2	.00 6.00	10.00	14.00	
				Pooled preval	ence estimate	e	

Figure 61. Pooled estimates for syphilis in high-risk MSM

Meta-analysis: TP-MSM high risk	Sampling date	Country	Ν			Weight	PE % [95% CI]
Schmidt 2020	2016	СН	779	⊢ ∎-1		30.00%	1.70 [0.80, 2.60]
Foschi 2018	2017	IT	165	F	e	— 120.88%	10.30 [5.66, 14.94]
Streeck 2022	2018	DE	1043	⊢∎⊣		29.72%	3.50 [2.38, 4.62]
Szetela 2023_hr	2020	PL	103	ŀ	•	19.40%	7.76 [2.59, 12.93]
$l^2 = 94.4\%$			2090			100%	5.21 [1.44, 8.98]
			0.	00 5.00	10.00	15.00	
				Pooled preva	lence estima	te	

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age ¹	Setting	Specimen	Additional specimen tested	Test method⁵	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
Female sex v	Female sex workers												
Portugal	Almeida 2020_f [89]	09/2015	09/2016	convenience	36.2 ^{2, 4}	outreach	blood	none	dual	74	1.40	0.00-3.98	high
Italy	Marrone 2023 [112]	01/2020	12/2020	convenience	17-52 ³	community	blood	none	dual	82	0.00	0.00-2.27	high
Netherlands	Druckler 2020_f [91]	01/2014	12/2015	convenience	28.0	health centre	blood	none	single	1 390	4.60	3.50-5.71	high
Netherlands	van Dulm 2020 [92]	01/2016	09/2016	convenience	28.0	community	blood	none	dual	1 213	0.00	0.00-0.16	medium
Switzerland	Vernazza 2020 [93]	01/2016	06/2017	convenience	31.0	STI clinic	blood	none	dual	490	1.20	0.25-2.20	medium
Switzerland	Vu 2020 [95]	04/2015	12/2016	convenience	18-60 ³	community	blood	none	dual	96	5.00	0.76-9.65	high
Male and tra	nsgender sex wo	orkers											
Portugal	Almeida 2020_m [89]	09/2015	09/2016	convenience	36.2 ^{2, 4}	outreach	blood	none	dual	12	8.30	0.00-23.97	high
Portugal	Almeida 2020_t [89]	09/2015	09/2016	convenience	36.2 ^{2, 4}	outreach	blood	none	dual	14	21.40	0.00-42.92	high
Netherlands	Druckler 2020_m [91]	01/2014	12/2015	convenience	28.0	health centre	blood	none	single	84	15.00	7.74–23.21	high
Netherlands	Druckler 2020_t [91]	01/2014	12/2015	convenience	39.0	health centre	blood	none	single	15	53.30	28.09-78.58	high
Female sex v	vorkers PWID												
Czechia	Sekera 2022 [113]	NR/2003	NR/2018	convenience	28.8 ²	outreach	blood	none	single	77	7.80	1.81–13.78	high
Non-EU/EFT	A												
Mixed gende	r sex workers												
UK	Sultan 2021 [97]	NR	NR	convenience	NR	outreach	blood	none	NR	23	26.10	8.14-44.03	high

NR: not reported; RoB: risk of bias; STI: sexually transmitted infection.

1 median, unless indicated otherwise; 2 mean; 3 range; 4 comprises male, female, and transgender sex workers (not reported separately); 5 'dual' indicates that at least two independent and different tests were used to ascertain TP infection/'single' indicates that diagnosis of TP infection was based on a single test.

Figure 62. Pooled estimates for syphilis in female sex workers

Meta-analysis: TP-Sexworkers_f	Sampling date	Country	N					Weight	PE % [95% CI]		
Druckler 2020_f	2014	NL	1390		⊢∎			19.29%	4.60 [3.50, 5.70]		
Vernazza 2020	2016	СН	490	⊢∎				19.63%	1.20 [0.23, 2.17]		
Vu 2020	2016	СН	96	·				8.66%	5.00 [0.56, 9.44]		
vanDulm 2020	2016	NL	1213					20.95%	0.00 [0.00, 0.11]		
Almeida 2020_f	2016	PT	74					14.00%	1.40 [0.00, 4.03]		
Marrone 2023	2020	IT	82	— —i				17.48%	0.00 [0.00, 1.66]		
$l^2 = 93\%$			3345	•	8			100%	1.75 [0.04, 3.46]		
				i T	1	1		7			
			C	.00 2.00	4.00	6.00	8.00				
	Pooled prevalence estimate										

Figure 63. Pooled estimates for syphilis in male and transgender sex workers

Meta-analysis: TP-Sexworkers_m+t	Sampling date	Country	Ν				Weigh	nt PE % [95% CI]
Druckler 2020_m	2014	NL	84	⊢∎ -1			31.96%	15.00 [7.27, 22.73]
Druckler 2020_t	2014	NL	15		ŀ	•	1 9.45%	53.30 [28.05, 78.55]
Almeida 2020_m	2016	PT	12				26.51%	8.30 [0.00, 23.94]
Almeida 2020_t	2016	PT	14		i		22.08%	21.40 [0.00, 42.89]
$l^2 = 77.3\%$			125				100%	22.09 [5.14, 39.03]
				i – – –	1	1		
			0	0.00 20.00	40.00	60.00	80.00	
				Pooled p	revalenc	e estima	ate	

Syphilis in people who inject drugs

Among people who inject drugs, pooled TP prevalence is estimated to be 1.56% (95% CI 0.45–2.76, see Table 32). TP prevalence among PWID was found to be 1.82% (95% CI 0.48–3.16), based on a Czech study (54.7% males), and 1.00% (95% CI 0.00–2.98) based on a Serbian study (81.8% males) (see Figure 64).

Table 32. Prevalence estimates for syphilis in PWID

Country	Author year	Sampling period start	Sampling period end	Sampling method	Age ¹	Setting	Specimen	Additional specimen tested	Test method⁴	No. tested	РЕ (%)	95%-CI	RoB
EU/EFTA													
PWID													
Czechia	Sekera 2022 [113]	NR/2003	NR/2018	convenience	28.8 ²	outreach	blood	none	single	384	1.82	0.48-3.16	high
Serbia	Borovcanin 2019 [114]	07/2015	08/2015	convenience	19-63 ³	clinical	blood	none	single	99	1.00	0.00-2.98	high

NR: not reported; RoB: risk of bias; STI: sexually transmitted infection.

1 median, unless indicated otherwise

2 mean

3 range

4 'dual' indicates that at least two independent and different tests were used to ascertain TP infection/single' indicates that diagnosis of TP infection was based on a single test.

Figure 64. Pooled estimates for syphilis in people who inject drugs

Meta-analysis: TP-PWID	Sampling date	Country	N					Weight	PE % [95% CI]
Sekera 2022	2010	cz	384	ŀ		•		68.43%	1.82 [0.48, 3.16]
Borovcanin 2019	2015	RS	99					31.57%	1.00 [0.00, 2.97]
$l^2 = 0\%$			483	-			-	100%	1.56 [0.45, 2.67]
				0.00	1.00	2.00	3.00	4.00	
					Pooled p	revalence	estima	te	

4. Discussion

This systematic review aimed to identify and synthesise the existing evidence on the prevalence of the four curable STIs in the general population and populations of special interest (MSM, sex workers, and PWID) in the European region. The general aim of this project was to support the understanding of STI epidemiology in Europe and the monitoring of STI trends by providing epidemiological information gathered in prevalence studies. These data constitute an important complement to routine STI case surveillance of diagnosed cases reported to ECDC, which is dependent on surveillance system characteristics, testing policies and practices that vary by country and over time and cannot fully capture asymptomatic infections. Prevalence estimates from nationally representative studies retrieved by a previous ECDC literature review on chlamydia epidemiology indicated a more homogeneous distribution of the infection in the general population across European countries than that depicted by case-based surveillance data [115]. STI prevalence studies may serve as proof of concept for using prevalence estimates as a complementary source to monitor progress towards elimination targets, in particular where STI surveillance is not comprehensive. By tracking changes in prevalence rates over time, policymakers can target prevention efforts, assess their impact and adjust strategies to reduce the burden of STIs.

Summary of the evidence

With the evidence base gathered in this systematic review, we were able to produce European pooled estimates. Substantial variation in the prevalence estimates for CT, NG, TV, and TP were observed between countries, both in the general population and in populations of special interest. However, these need to be interpreted with great caution, taking into consideration the different sampling dates and methodological aspects of the underlying studies.

General population and proxy populations

Overall, the current burden of CT in the European region is estimated to be 2.76% (95% CI 1.65–3.87) among women (1.99% in representative studies, 1.83% in antenatal care, 3.79% in other proxy populations), and 2.64% (95% CI 0.61–4.67) among men (1.11% in representative studies, 4.05% in proxy populations). Overall prevalence of NG is estimated to be 0.24% (95% CI 0.00–0.50) among women (0.07% in representative studies, 0.02% in antenatal care, 0.53% in other proxy populations), and 0.10% (95% CI 0.00–0.22) among men (0.08% in representative studies, 0.91% in proxy populations). Overall prevalence of TV is estimated to be 0.64% in antenatal care, 0.85% in other proxy populations), and 0.00% (95% CI 0.03–0.99) among women (0.64% in antenatal care, 0.85% in other proxy populations), and 0.00% (95% CI 0.00–0.21) among men (only proxy populations available). Overall prevalence of TP was estimated to be 0.14% (95% CI 0.00–0.29) among women (only antenatal care available). Among men in the general population, no TP estimates were identified.

For comparison, the review by Rowley et al. (2019) [11], based on a meta-analysis of studies spanning from 2009 to 2016, indicated a slightly higher CT prevalence of 3.2% (95% uncertainty interval [UI]: 2.5–4.2) and a very similar NG prevalence of 0.3% (95% UI: 0.1–0.6) among European women aged 15-49 years. For this population group, they reported a slightly lower TP prevalence of 0.1% (95% UI: 0.0–0.4) and a higher TV estimate of 1.6% (95% UI: 1.1–2.3). Differences in methodological approaches, such as using antenatal care data for TP and adjustment ratio for TV (versus CT), need to be acknowledged when comparing results from the two literature reviews alongside potential changes in prevalence in more recent years.

For the general male population, the estimates from the current meta-analysis fall within the uncertainty intervals for the prevalence estimates proposed by Rowley et al. (2019) [11]. They estimated a prevalence of 2.2% (UI 1. -3.0) for CT, 0.3% (95% UI 0.1–0.5) for NG, and 0.2% (95% UI 0.1–0.3) for TV. This review did not identify studies reporting the prevalence of TP in men; however, Rowley et al. [11] proposed a figure of 0.1% (95% UI 0.0–0.3), based on a prevalence ratio of 1 for syphilis in males versus females.

Young people

In young people aged 15 to 24 years, the pooled prevalence estimates of CT, NG, and TV were substantially higher when compared to the general population: CT prevalence is estimated to be 5.54% in young women (4.44% in representative studies, 8.19% in antenatal care, 5.16% in other proxy populations) and 3.32% in young men (2.91% in representative studies, 4.14% in proxy populations). NG prevalence is estimated to be 0.51% in young women (0.20% in representative studies, 1.42% in antenatal care, 0.26% in other proxy populations) and 0.07% in young men (2.00% in representative studies, 0.45% in proxy populations). TV prevalence is estimated to be 0.64% in young women (0.20% in representative studies, 2.04% in antenatal care) and 0.00% in young men (based on two representative studies). For TP in young people, only one study conducted among young women in antenatal care was identified, reporting a prevalence of 0.00%.

Differences between representative studies and proxy populations (including antenatal care)

The prevalence estimates derived from proxy populations other than antenatal care are generally higher than those derived from representative studies. These differences may suggest higher STI risks in the studies of proxy population. However, they might also be explained by stronger participation bias associated with convenience sampling, which was employed in these studies, or simply by different countries contributing to the various estimates. Interestingly, prevalences of CT and NG are markedly increased in antenatal care compared to representative studies in young people, while no such difference was observed in mixed-age studies. This may suggest a higher STI risk in women who become pregnant at a comparatively young age. However, since the pooled estimates are mostly based on small numbers of studies with considerable risk of bias, the results can only be interpreted very cautiously and should be explored further in additional studies.

Populations of special interest

Men who have sex with men

The STI prevalence estimates available in the identified literature cannot be generalised to the whole population of MSM. We calculated pooled estimates for various sub-groups of MSM: in MSM visiting STI clinics, the estimated prevalences are 9.72% for CT, 10.46% for NG, 0.10% for TV and 6.53% for TP. In MSM living with HIV, the estimated prevalences are 6.08% for CT, 4.74% for NG, 0.94% for TV and 14.36% for TP. In MSM on PrEP, the estimated prevalences are 9.57% for CT, 8.99% for NG and 6.48% for TP. In MSM engaging in 'high-risk' sexual behaviour, the estimated prevalences are 15.35% for CT, 14.37% for NG, 1.54% for TV and 5.21% for TP. It is interesting to note that the prevalence of CT and NG is markedly lower in MSM living with HIV than in MSM visiting STI clinics. This may suggest a lower STI risk in MSM living with HIV, however, the pooled estimates are based on only three studies and the prevalence of TP is higher in MSM living with HIV than in MSM visiting STI clinics.

A recent systematic review and meta-analysis by Tsuboi et al. (2021) [116] employed a broader scope, both geographically (global) and temporally (including studies between 2000 and 2020). The review proposed a pooled prevalence of 3.4% (95% CI: 1.8-5.4) for the Sustainable Development Goals region 'Europe and Northern America'. This estimate is based on 35 study estimates from 16 countries, about half of which stem from countries not included in our systematic review (USA, Canada, Russia). While the review authors excluded studies based on some factors with potential for bias (e.g. participants exclusively HIV-infected; routine STI clinics attendees) to achieve more representative estimates for the general MSM population, they did include studies included employed convenience sampling in various settings potentially associated with an increased risk of STI, such as walk-in STI testing facilities, saunas and bathhouses, clubs, cruising areas and homeless shelters. The authors reported that TP prevalence estimates were high in studies exclusively involving male sex workers, transgender women, and transgender women sex workers, as well as in studies where HIV prevalence was greater than 5.0%, which is consistent with the findings of the current review.

Potentially representative of the larger MSM population, the 2017 European MSM Internet Survey (EMIS) estimated that of 127 792 respondents from 44 European countries 4.5%, 5.2% and 4.4% had a self-reported diagnosis of CT, NG and TP, respectively in the previous 12 months [117, 118]. In addition to the bias generally associated with self-reported diagnoses, the authors of the report note that due to a translation error, the French questionnaire on TP, CT and NG may have been understood by some men as having undergone a test rather than having a positive test result, possibly affecting the estimates from France, Belgium and Switzerland.

Sex workers

We identified several STI prevalence studies among sex workers, suggesting a high prevalence of STIs among this vulnerable population. In female sex workers, pooled prevalences are estimated to be 5.50% for CT, 2.22% for NG, 8.97% for TV, and 1.75% for TP. Among male and transgender (male to female) sex workers, prevalence estimates were found to be particularly high, with pooled prevalences estimated to be 6.04% for CT, 6.36% for NG and 22.09% for TP.

People who inject drugs

Only two studies were identified for PWID, and both reported on the prevalence of TP. The pooled TP prevalence is estimated to be 1.56%, based on the studies from Czechia and Serbia.

Quality of the evidence

Even though a substantial number of studies were identified in total, the body of evidence for the prevalence of the four STIs studied in the European region has significant gaps. Specifically, there are 17 countries for which no relevant studies were identified. In addition, the majority of the available studies have a high or medium risk of bias. The main sources of bias across the studies are the sampling frames and the sampling methods. Representative studies employing probability-sampling would provide prevalence estimates with much higher certainty and are feasible in the general population. Other sources of bias are due to insufficiently detailed reporting of important information, such as characteristics of the individuals included, testing methods (especially

for TP) and response or participation rates. These shortcomings could be reduced with more comprehensive and transparent reporting practices. Limited geographical coverage in studies was also a frequent issue, with regional or local data being more regularly available than national estimates.

Most of the pooled estimates calculated had high values in the I² statistics, suggestive of considerable heterogeneity. However, high I² values are very common in pooled estimates of prevalence and should be interpreted much more cautiously than in other types of meta-analyses [20]. However, it is noteworthy that the pooled estimates which only include representative studies employing probability sampling present substantially lower I² values than pooled estimates which include studies in proxy populations and studies which use convenience sampling. This further underscores the value and the importance of well-designed representative studies of STI prevalence.

While publication bias was not statistically assessed, it is noteworthy that a substantial number of studies were only available as conference abstracts.

Gaps in evidence at European level

The identified studies are unevenly distributed throughout the European region, with 20, 30, 33 and 37 countries having no studies available reporting CT, NG, TV, and TP prevalence for the general population, respectively. Therefore, caution is warranted when comparing prevalence estimates across countries.

Representative studies employing probability-based sampling are very scarce for all the STIs studied, and not a single one is available for the prevalence of TP in any population. While this type of study is resource-intensive, studies in certain proxy populations, such as women in antenatal care, or individuals attending routine check-ups or cancer screenings, can be conducted much more easily. Conducting studies in proxy populations could provide valuable information for countries where estimates of the STI prevalences are not available from studies with probability-based sampling.

MSM are a population of considerable interest, with more than 30 studies included in total. However, the evidence on STI prevalence in MSM is severely impaired by the fact that the studies almost exclusively recruited participants through STI clinics. Individuals visiting STI clinics are very likely to have a higher risk of STI, therefore the identified prevalence estimates in this systematic review can only be viewed as estimates of prevalence in MSM who visit STI clinics, and are not representative of the whole MSM population. Comparison between the studies on MSM and the general population included in this systematic review is hindered by two factors. Firstly, the fact that the baseline risk of STIs presumably differs, depending on where/how individuals are recruited for studies. Secondly, the fact that most prevalence estimates reported for MSM are composite or pooled prevalences from the sampling of different anatomical regions (usually urogenital, pharyngeal, and anorectal swabs). In contrast, most prevalence estimates reported for the general population were based on the results from urine samples, and urogenital swabs for females. Composite prevalence estimates from multiple anatomical sites are bound to be higher than single-site prevalence estimates. In addition, the sensitivity of STI tests in urine samples might be different to that in urogenital or other swabs.

Strengths and limitations

This review is based on an in-depth and well-defined search strategy, which was applied to an extensive set of databases. Input from ECDC experts ensured that the appropriate research questions, objectives, search strategy and eligibility criteria were used. In addition to the bibliographic databases, supplementary and grey literature was searched and existing contacts with national and international experts were queried for additional published articles or grey literature providing prevalence estimates. While the primary aim of the review is to provide insights for policymakers in the European region, the geographical scope was broadened to encompass not only EU/EFTA Member States, but also EU candidate and potential candidate countries, as well as the United Kingdom. The risk of bias was assessed for each study by using a predefined methodology to investigate the impact of differences in study design and conduct (e.g. study population selection and sampling, different laboratory tests, and sample types).

However, there are several shortcomings and limitations regarding the methodological choices made in this systematic review. For example, study populations that were not considered appropriate proxies for the general population included blood donors. While some recent systematic reviews have integrated blood donors as proxy populations [119], they were excluded from this review due to concerns regarding their representativeness of the general population. This decision was influenced by the common practice by transfusion services of excluding donors who report risks or exhibit infections during screening procedures [120]. Incorporating studies involving blood donors could offer valuable supplementary insights, particularly regarding the prevalence of TP, given the limited availability of studies on TP prevalence in the general population. In addition, studies on individuals who visit STI clinics that do not specifically target MSM were not included in this systematic review. If such studies had been included and a comparison made between the prevalence of STIs in non-MSM individuals visiting STI clinics with MSM individuals visiting STI clinics, this could have added valuable information to the review and helped with the contextualisation and interpretation of the prevalence estimates for MSM. Most of the studies involving MSM and sex workers used samples from different anatomical sites and reported prevalence estimates from the various sampling sites separately, in addition to the composite estimates. Analysing these different estimates in more detail could provide valuable additional insights into the epidemiology of the STIs studied, however this was beyond the scope of this report.

5. Conclusions

This review provides evidence-based prevalence estimates for CT, NG, TV and TP for the general population and some populations of special interest that will be useful for policy action to limit the spread of curable STIs in the European region. However, efficient infection prevention and control policies would require the availability of relatively recent prevalence estimates from most of the countries in the region and the current evidence base is insufficient. Moreover, many of the studies that are available have a considerable risk of bias, further limiting the certainty of the available evidence. Key populations, such as sex workers and PWID, are very poorly studied. Studies on MSM are more numerous but were almost exclusively conducted in STI clinics and are therefore of limited value for estimating the true STI prevalence in the general MSM population. The significant gaps in both the quantity and the quality of the evidence on the prevalence of curable STIs in the European region identified in this review should be addressed in future high-quality studies.

Actions that can be taken based on this evidence assessment

Against the backdrop of this study, and in line with the recommendations formulated in WHO's Regional action plans for ending AIDS and the epidemics of viral hepatitis and sexually transmitted infections 2022–2030 [2], several public health actions are advisable, especially for countries with a less comprehensive description of STI epidemiology.

Strengthen the capacity to describe STI epidemiology

- by conducting prevalence studies representative of the general population, employing probability-based sampling where this is missing, or if routine surveillance is not comprehensive, or data is not of acceptable quality;
- by considering/collecting estimates for proxy populations that may be available from specific settings (such as antenatal care programmes, routine check-ups or screenings for other conditions, or for military recruits) as a more feasible and less resource-intensive alternative to representative probability-based sampling studies.

Implement evidence-based STI prevention and control measures

• by using prevalence estimates in combination with other epidemiology data to inform national prevention policies targeting the population groups most affected by STI epidemics, such as young people, specific sub-groups of MSM and/or sex workers.

6. References

- 1 World Health Organization (WHO). Sexually transmitted infections (STIs). Factsheet. WHO; 2024. Available from: <u>https://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections-(stis</u> [accessed 27.08.2024]
- 2 World Health Organization (WHO) Regional Office for Europe. Regional action plans for ending AIDS and the epidemics of viral hepatitis and sexually transmitted infections 2022–2030. ; 2024 [accessed 27.08.2024].
- 3 European Centre for Disease Prevention and Control (ECDC). Surveillance Atlas of Infectious Diseases. ECDC; 28 April 2023. Available from: <u>https://www.ecdc.europa.eu/en/surveillance-atlas-infectious-diseases</u>
- 4 Amin A, Garcia Moreno C. Addressing gender-based violence to reduce risk of STI and HIV. Sexually Transmitted Infections. 2013;89(Suppl 1): A8.
- 5 Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 19902013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015;386(9995): 743-800.
- 6 Garcia ML. Sexually Transmitted Diseases. Yale J Biol Med: 2009, Yale Journal of Biology and Medicine 2009 (p. 93).
- 7 World Health Organization (WHO). Global health sector strategies on, respectively, HIV, viral hepatitis and sexually transmitted infections for the period 2022-2030. Geneva: WHOAvailable from: <u>https://www.who.int/publications/i/item/9789240053779</u>
- 8 European Commission (EC). Commission Implementing Decision (EU) 2018/945 of 22 June 2018 on the communicable diseases and related special health issues to be covered by epidemiological surveillance as well as relevant case definitions. OJ L 170, 6.7.2018, p. 1–74 Available from: <u>https://eur-lex.europa.eu/eli/dec_impl/2018/945/oj</u>
- 9 European Centre for Disease Prevention and Control (ECDC). Chlamydia control in Europe a survey of Member States 2012. Stockholm: ECDC, 2014. Available from: https://www.ecdc.europa.eu/en/publications-data/chlamydia-control-europe-survey-member-states-2012
- 10 Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc. 2015;13(3):147-53.
- 11 Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M, Abu-Raddad LJ, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97(8):548-.
- 12 McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. Peer Review of Electronic Search Strategies: 2015 Guideline Statement. Journal of Clinical Epidemiology. 2016;75:40-6.
- 13 Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Systematic Reviews. 2016;5(1):210.
- 14 Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Chapter 5: Systematic Reviews of Prevalence and Incidence. 2020. DOI:<u>10.46658/JBIMES-20-06</u>
- 15 Munn Z, Moola S, Riitano D, Lisy K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int J Health Policy Manag. 2014;3(3):123-8.
- 16 National Institute for Health and Care Excellence, UK (NICE). Developing NICE guidelines: the manual. Appendix H: Appraisal checklists, evidence tables, GRADE and economic profiles. Available from: <u>https://www.nice.org.uk/process/pmg20/resources/appendix-h-appraisal-checklists-evidence-tables-grade-and-economic-profiles-pdf-8779777885</u>
- 17 Viechtbauer W. Hypothesis tests for population heterogeneity in meta-analysis. British Journal of Mathematical and Statistical Psychology. 2007;60(1):29-60.
- 18 Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software. 2010;36(3): Articles-148.
- 19 Barker TH, Migliavaca CB, Stein C, Colpani V, Falavigna M, Aromataris E, et al. Conducting proportional meta-analysis in different types of systematic reviews: a guide for synthesisers of evidence. BMC Med Res Methodol. 2021;21(1):189.
- 20 Migliavaca CB, Stein C, Colpani V, Barker TH, Ziegelmann PK, Munn Z, et al. Meta-analysis of prevalence: I(2) statistic and how to deal with heterogeneity. Res Synth Methods. 2022;13(3):363-7.
- 21 Heijne JCM, van den Broek IVF, Bruisten SM, van Bergen JEA, de Graaf H, van Benthem BHB. National prevalence estimates of chlamydia and gonorrhoea in the Netherlands. Sex Transm Infect. 2019:53-9.
- 22 Klavs I, Milavec M, Berlot L, Kustec T, Grgic-Vitek M, Lavtar D, et al. Prevalence of sexually transmitted infections with *Chlamydia trachomatis*, *Neisseria gonorrhoeae*, *Mycoplasma genitalium* and *Trichomonas*

vaginalis: findings from the National Survey of Sexual Lifestyles, Attitudes and Health, Slovenia, 2016 to 2017. Euro Surveill. 2022. Available from: <u>https://pubmed.ncbi.nlm.nih.gov/35393930/</u>

- 23 Fischer N, Peeters I, Klamer S, Montourcy M, Cuylaerts V, Van Beckhoven D, et al. Prevalence estimates of genital *Chlamydia trachomatis* infection in Belgium: results from two cross-sectional studies. BMC Infect Dis. 2021: 947.
- 24 Foschi C, Nardini P, Banzola N, D'Antuono A, Compri M, Cevenini R, et al. *Chlamydia trachomatis* infection prevalence and serovar distribution in a high-density urban area in the north of Italy. J Med Microbiol. 2016;65(6):510-20.
- 25 Peuchant O, Le Roy C, Desveaux C, Paris A, Asselineau J, Maldonado C, et al. Screening for *Chlamydia trachomatis, Neisseria gonorrhoeae*, and *Mycoplasma genitalium* should it be integrated into routine pregnancy care in French young pregnant women? Diagn Microbiol Infect Dis. 2015;82(1):14-9.
- 26 Ljubin-Sternak S, Meštrović T, Kolarić B, Jarža-Davila N, Marijan T, Vraneš J. Assessing the need for routine screening for *Mycoplasma genitalium* in the low-risk female population: A prevalence and co-infection study on women from Croatia. Int J Prev Med. 2017;8(1):51.
- 27 Op de Coul ELM, Peek D, van Weert YWM, Morre SA, Rours I, Hukkelhoven C, et al. *Chlamydia trachomatis, Neisseria gonorrhoea*, and *Trichomonas vaginalis* infections among pregnant women and male partners in Dutch midwifery practices: prevalence, risk factors, and perinatal outcomes. Reprod Health. 2021:132.
- 28 Piñeiro L, Lekuona A, Cilla G, Lasa I, Martinez-Gallardo L-P, Korta J, et al. Prevalence of *Chlamydia trachomatis* infection in parturient women in Gipuzkoa, Northern Spain. Springerplus. 2016;5(1):566.
- 29 Skafte-Holm A, Pedersen TR, Sandager A, Maimburg RD, Lindahl C, Uldbjerg N, et al. The role of Chlamydiales in adverse pregnancy outcome: a community-based nested case-control study. Clin Microbiol Infect. 2023:941 e1-e6.
- 30 Berhonde S. Prevalence of the infection with *Chlamydia trachomatis, Neisseria gonorrhoeae* and *Mycoplasma genitalium* among women the family planning clinic of Bordeaux (Prévalence des infections à *Chlamydia trachomatis, Neisseria gonorrhoeae* et *Mycoplasma genitalium* chez les femmes consultant au centre d'orthogénie du CHU de Bordeaux) 2015.
- 31 Frej-Madrzak M, Grybos A, Grybos M, Teryks-Wolyniec D, Jama-Kmiecik A, Sarowska J, et al. PCR diagnostics of *Chlamydia trachomatis* in asymptomatic infection by women. Ginekol Pol. 2018: 115-9.
- 32 Frej-Madrzak M, Jama-Kmiecik A, Sarowska J, Teryks-Wolyniec D, Grybos A, Grybos M, et al. *Streptococcus agalactiae* and *Chlamydia trachomatis* detection in women without symptoms of infection. Adv Clin Exp Med. 2020: 707-13.
- 33 Babinská I, Halánová M, Kalinová Z, Čechová L, Čisláková L, Madarasová Gecková A. Prevalence of *Chlamydia trachomatis* infection and its association with sexual behaviour and alcohol use in the population living in separated and segregated Roma settlements in eastern Slovakia. Int J Environ Res Public Health. 2017;14(12).
- 34 Parthenis C, Panagopoulos P, Margari N, Kottaridi C, Spathis A, Pouliakis A, et al. The association between sexually transmitted infections, human papillomavirus, and cervical cytology abnormalities among women in Greece. Int J Infect Dis. 2018: 72-7.
- 35 Camporiondo MP, Farchi F, Ciccozzi M, Denaro A, Gallone D, Maracchioni F, et al. Detection of HPV and coinfecting pathogens in healthy Italian women by multiplex real-time PCR. Infez Med. 2016;24(1): 12-7.
- 36 Korzeniewski K. Urogenital *Chlamydia trachomatis* in the environment of soldiers from the Polish Special Forces. Ann Agric Environ Med. 2019: 51-4.
- 37 Seraceni S, Campisciano G, Contini C, Comar M. HPV genotypes distribution in *Chlamydia trachomatis* coinfection in a large cohort of women from north-east Italy. J Med Microbiol. 2016;65(5): 406-13.
- 38 Duron S, Panjo H, Bohet A, Bigaillon C, Sicard S, Bajos N, et al. Prevalence and risk factors of sexually transmitted infections among French service members. PLoS One. 2018: e0195158.
- 39 Hassan SJ, Dunphy E, Navin E, Marron L, Fitzsimmons C, Loy A, et al. Screening for Chlamydia is acceptable and feasible during Cervical Screening in General Practice. Ir Med J. 2016;109(1):326-7.
- 40 Sonnenberg P, Clifton S, Beddows S, Field N, Soldan K, Tanton C, et al. Prevalence, risk factors, and uptake of interventions for sexually transmitted infections in Britain: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal). Lancet. 2013;382(9907):1795-806.
- 41 Jadranin Z, Ristanovic E, Atanasievska S, Dedic G, Sipetic-Grujicic S, Bokonjić, et al. Prevalence and risk factors of *Chlamydia trachomatis* genital infection among military personnel of the Armed Forces of Serbia: A cross-sectional study. Vojnosanitetski pregled. 2019:168-74.
- 42 Albig J, Micevska M, Jovchevski S, Georgiveska J, Cekovska S, Stankov A. Incidence and Prevalence of Vaginal Infections in Women of Reproductive Age in North Macedonia. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2023;44(2):73-80.
- 43 Tjagur S, Mandar R, Poolamets O, Pomm K, Punab M. *Mycoplasma genitalium* Provokes Seminal Inflammation among Infertile Males. Int J Mol Sci. 2021.

- 44 Skaletz-Rorowski A, Potthoff A, Nambiar S, Wach J, Kayser A, Kasper A, et al. Sexual behaviour, STI knowledge and *Chlamydia trachomatis* (CT) and *Neisseria gonorrhoeae* (NG) prevalence in an asymptomatic cohort in Ruhrarea, Germany: PreYoungGo study. J Eur Acad Dermatol Venereol. 2021: 241-6.
- 45 Reyes-Lacalle A, Carnicer-Pont D, Masvidal MG, Montero-Pons L, Cabedo-Ferreiro R, Falguera-Puig G. Prevalence and Characterization of Undiagnosed Youths at Risk of *Chlamydia trachomatis* Infection: A Cross-sectional Study. J Low Genit Tract Dis. 2022: 223-8.
- 46 Espies N, J, Justribo E, Aramburu J, Bernet A, Marquez A, et al. Results of a Community-Based Screening Program for *Chlamydia trachomatis* Genital Infection in Young People Aged 18-25 Years. Cureus. 2023: Oct 12;15(10):e46916.
- 47 Czerwinski M, Niedzwiedzka-Stadnik M, Zielicka-Hardy A, Tomusiak A, Sadkowska-Todys M, Zielinski A, et al. Genital *Chlamydia trachomatis* infections in young adults a school-based bio-behavioural study in urban areas, Poland, 2012 to 2015. Euro Surveill. 2018. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824124/
- 48 Bozicevic I, Blazic TN, Kosanovic Licina ML, Marijan T, Mestrovic T, De Zan T, et al. Knowledge about and prevalence of *Chlamydia trachomatis* in a population-based sample of emerging Croatian adults. PLoS One. 2023: e0293224.
- 49 Dorado Criado M, Fabra Garrido C, Merino San Martin E, Gonzalez Arboleya C, Gomez-Arroyo B, Gonzalez-Donapetry P, et al. Is an Antenatal Screening for *Chlamydia trachomatis* Necessary in the Current Society? Pediatr Infect Dis J. 2021:1034-6.
- 50 Munoz Santa A, Belles Belles A, Lopez Gonzalez E, Prats Sanchez I, Mormeneo Bayo S, Bernet Sanchez A, et al. Report of sexually transmitted infections prevalence in asymptomatic pregnant women under 25 years old in Lleida, Spain. Rev Esp Quimioter. 2022:100-2.
- 51 O'Higgins AC, Jackson V, Lawless M, Le Blanc D, Connolly G, Drew R, et al. Screening for asymptomatic urogenital *Chlamydia trachomatis* infection at a large Dublin maternity hospital: results of a pilot study. Ir J Med Sci. 2017;186(2):393-7.
- 52 Lopez-Corbeto E, Gonzalez V, Casabona J, Grupo de estudio CN. First data *Chlamydia trachomatis* and other STI prevalence and co-infections in pregnant women under 25 years in Catalonia, Spain. Med Clin (Barc). 2021:33-4.
- 53 Yuguero O, -Armenteros JM, Vilela A, Aramburu J, Lain R, Godoy P, et al. Preliminary Results of a Screening Programme for Chlamydia in an Asymptomatic Young Population in Spain. Front Public Health. 2021:9:615110.
- 54 Gravningen K, Simonsen GS, Furberg A-S, Wilsgaard T. Factors associated with *Chlamydia trachomatis* testing in a high-school based screening and previously in clinical practice: a cross-sectional study in Norway. BMC Infect Dis. 2013;13(1):361.
- 55 Silva J, Cerqueira F, Ribeiro J, Sousa H, Osório T, Medeiros R. Is *Chlamydia trachomatis* related to human papillomavirus infection in young women of southern European population? A self-sampling study. Arch Gynecol Obstet. 2013;288(3):627-33.
- 56 Panatto D, Amicizia D, Bianchi S, Frati ER, Zotti CM, Lai PL, et al. *Chlamydia trachomatis* prevalence and chlamydial/HPV co-infection among HPV-unvaccinated young Italian females with normal cytology. Hum Vaccin Immunother. 2015;11(1):270-6.
- 57 Matteelli A, Capelli M, Sulis G, Toninelli G, Carvalho ACC, Pecorelli S, et al. Prevalence of *Chlamydia trachomatis* and *Neisseria gonorrhoeae* infection in adolescents in Northern Italy: an observational schoolbased study. BMC Public Health. 2016;16(1):200.
- 58 Bianchi S, Boveri S, Igidbashian S, Amendola A, Urbinati AMV, Frati ER, et al. *Chlamydia trachomatis* infection and HPV/*Chlamydia trachomatis* co-infection among HPV-vaccinated young women at the beginning of their sexual activity. Arch Gynecol Obstet. 2016;294(6):1227-33.
- 59 Adhikari I, Eriksson T, Harjula K, Hokkanen M, Apter D, Nieminen P, et al. Association of *Chlamydia trachomatis* infection with cervical atypia in adolescent women with short-term or long-term use of oral contraceptives: a longitudinal study in HPV vaccinated women. BMJ Open. 2022;12(6): e056824.
- 60 Oakeshott P, Kerry-Barnard S, Fleming C, Phillips R, Drennan VM, Adams EJ, et al. 'Test n Treat' (TnT): a cluster randomized feasibility trial of on-site rapid *Chlamydia trachomatis* tests and treatment in ethnically diverse, sexually active teenagers attending technical colleges. Clin Microbiol Infect. 2019: 865-71.
- 61 Druckler S, van Rooijen MS, de Vries HJC. Chemsex Among Men Who Have Sex With Men: a Sexualized Drug Use Survey Among Clients of the Sexually Transmitted Infection Outpatient Clinic and Users of a Gay Dating App in Amsterdam, the Netherlands. Sex Transm Dis. 2018: 325-31.
- 62 Evers YJ, Dukers-Muijrers NHTM, van Liere GAFS, van Bergen J, Kuizenga-Wessel S, Hoebe CJPA. Pharyngeal *Chlamydia trachomatis* in Men Who Have Sex With Men (MSM) in The Netherlands: A Large Retrospective Cohort Study. Clinical Infectious Diseases. 2022;74(8):1480-4.
- 63 Rondeau P, Valin N, Decre D, Girard PM, Lacombe K, Surgers L. *Chlamydia trachomatis* screening in urine among asymptomatic men attending an STI clinic in Paris: a cross-sectional study. BMC Infect Dis. 2019: 31.

- 64 Ayerdi Aguirrebengoa O, Vera Garcia M, Rueda Sanchez M, D Elia G, Chavero Méndez B, Alvargonzalez Arrancudiaga M, et al. Risk factors associated with sexually transmitted infections and HIV among adolescents in a reference clinic in Madrid. PLoS One. 2020: e0228998.
- 65 Ribeiro S, de Sousa D, Medina D, Castro R, Lopes A, Rocha M. Prevalence of gonorrhea and chlamydia in a community clinic for men who have sex with men in Lisbon, Portugal. Int J STD AIDS. 2019: 951-9.
- 66 Achterbergh RCA, Druckler S, van Rooijen MS, van Aar F, Slurink IAL, de Vries HJC, et al. Sex, drugs, and sexually transmitted infections: A latent class analysis among men who have sex with men in Amsterdam and surrounding urban regions, the Netherlands. Drug Alcohol Depend. 2020;206: 107526.
- 67 van Aar F, Kroone MM, de Vries HJ, Gotz HM, van Benthem BH. Increasing trends of lymphogranuloma venereum among HIV-negative and asymptomatic men who have sex with men, the Netherlands, 2011 to 2017. Euro Surveill. 2020. Available from: <u>https://www.eurosurveillance.org/content/10.2807/1560-</u> 7917.ES.2020.25.14.1900377
- 68 Hilmarsdottir I, Arnardottir EM, Johannesdottir ER, Golparian D, Unemo M. *Chlamydia trachomatis* in Iceland: Prevalence, Clinico-epidemiological Features and Comparison of Cobas 480 CT/NG and Aptima Combo 2 (CT/NG) for Diagnosis. Acta Derm Venereol. 2021: adv00393.
- 69 Hoyos-Mallecot Y, Garcia JN, Sulleiro E, Esperalba J, Salmeron P, Zarzuela F, et al. Drassanes Expres: a public and confidential testing service for asymptomatic STIs with same-day result notification. Sex Transm Infect. 2022: 166-72.
- 70 Jansen K, Steffen G, Potthoff A, Schuppe AK, Beer D, Jessen H, et al. STI in times of PrEP: high prevalence of chlamydia, gonorrhea, and mycoplasma at different anatomic sites in men who have sex with men in Germany. BMC Infect Dis. 2020: 110.
- 71 Rahib D, Bercot B, Delagreverie H, Gabassi A, Delaugerre C, Salord H, et al. Online self-sampling kits for human immunodeficiency virus and other sexually transmitted infections: Feasibility, positivity rates, and factors associated with infections in France. Int J STD AIDS. 2022: 355-62.
- 72 Spinner CD, Boesecke C, Jordan C, Wyen C, Kummerle T, Knecht G, et al. Prevalence of asymptomatic sexually transmitted infections in HIV-positive men who have sex with men in Germany: results of a multicentre cross-sectional study. Infection. 2018;46(3): 341-7.
- 73 Farfour E, Dimi S, Chassany O, Fouere S, Valin N, Timsit J, et al. Trends in asymptomatic STI among HIVpositive MSM and lessons for systematic screening. PLoS One. 2021;16(6): e0250557.
- 74 Reyniers T, Nöstlinger C, Laga M, De Baetselier I, Crucitti T, Wouters K, et al. Choosing Between Daily and Event-Driven Pre-exposure Prophylaxis: Results of a Belgian PrEP Demonstration Project. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2018;79(2).
- 75 Nozza S, Raccagni AR, Lolatto R, Ceccarelli D, Galli L, Alberton F, et al. Characteristics of HIV pre-exposure prophylaxis users at first PrEP counselling visit: the CSL-PrEP cohort. BMJ Open. 2022;12(12): e067261.
- 76 Hovaguimian F, Martin E, Reinacher M, Rasi M, Schmidt AJ, Bernasconi E, et al. Participation, retention and uptake in a multicentre pre-exposure prophylaxis cohort using online, smartphone-compatible data collection. HIV Med. 2022;23(2):146-58.
- Pakov I, Birindzhieva E, Philipova I, Terzieva K, Gancheva G. Pre-Exposure Prophylaxis (Prep) of Infection – a Crucial Tool for Reducing the Burden Upon the Public Health. Journal of IMAB - Annual Proceedings (Scientific Papers). 2022: 4688-90.
- 78 Chromy D, Urban N, Grabmeier-Pfistershammer K, Touzeau-Roemer V, Skoll M, Geusau A, et al. High Prevalence of Asymptomatic Sexually Transmitted Infections in Austrian Pre-Exposure Prophylaxis Users: A Prospective Observational Study. AIDS Patient Care STDS. 2023;37(3): 115-8.
- 79 Schmidt AJ, Rasi M, Esson C, Christinet V, Ritzler M, Lung T, et al. The Swiss STAR trial an evaluation of target groups for sexually transmitted infection screening in the sub-sample of men. Swiss Med Wkly. 2020: w20392.
- 80 Foschi C, Gaspari V, Sgubbi P, Salvo M, D'Antuono A, Marangoni A. Sexually transmitted rectal infections in a cohort of 'men having sex with men'. J Med Microbiol. 2018;67(8):1050-7.
- 81 Streeck H, Jansen K, Crowell TA, Esber A, Jessen HK, Cordes C, et al. HIV pre-exposure prophylaxis was associated with no impact on sexually transmitted infection prevalence in a high-prevalence population of predominantly men who have sex with men, Germany, 2018 to 2019. Euro Surveill. 2022. Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2022.27.14.2100591
- 82 Szetela B, Lapinski L, Giniewicz K. Very High Incidence of *Chlamydia trachomatis, Neisseria gonorrhoeae,* and *Treponema pallidum* among Low-Risk MSM in an Outpatient Clinic in Wroclaw, Poland in 2019-2020. Int J Environ Res Public Health. 2023.
- 83 Weidlich S, Schellberg S, Scholten S, Schneider J, Lee M, Rothe K, et al. Evaluation of Self-Collected Versus Health Care Professional (HCP)-Performed Sampling and the Potential Impact on the Diagnostic Results of Asymptomatic Sexually Transmitted Infections (STIs) in High-Risk Individuals. Infect Dis Rep. 2023:470-7.
- 84 De La Mora L, Laguno M, De Lazzari E, Ugarte A, Leal L, Torres B, et al. Vulnerability Conditions in a Cohort of Men Who Have Sex with Men Who Engage in Chemsex in Barcelona City: a Cross-Sectional Study. Sexuality Research and Social Policy. 2022;20(2):614-25.

- 85 Charin G, Symonds Y, Scholfield C, Graham C, Armstrong H. Three-site screening for STIs in men who have sex with men using online self-testing in an English sexual health service. Sex Transm Infect. 2023: 195-7.
- 86 Ogaz D, Miltz AR, Desai S, Saunders J, Charlett A, Gill ON, et al. Preparing for prep in England: Prevalence and incidence of HIV and bacterial stis. Topics in Antiviral Medicine. 2019: 20s-1s.
- 87 Kevlishvili S, Kvlividze O, Kvirkvelia V, Tananashvili D, Galdava G. Socio-Economic Features of Sexually Transmitted Infections among in Georgia. Georgian Med News. 2023:78-86.
- 88 Taspinar Sen E, Bastug A, Aypak A, Bodur H. Prevalence of Sexually Transmitted Infections Among People Living with HIV in Turkey and Related Factors. Mediterranean Journal of Infection Microbes and Antimicrobials. 2023;12.
- 89 Almeida N, Melo M, Soares I, Carvalho H. [Screening of Human Immunodeficiency Virus and Other Sexually Transmitted Infections in a Group of Sex Workers in Indoor Settings in the Porto Metropolitan Area]. Acta Med Port. 2020: 166-73.
- 90 Coorevits L, Traen A, Binge L, Van Dorpe J, Praet M, Boelens J, et al. Identifying a consensus sample type to test for *Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis* and human papillomavirus. Clin Microbiol Infect. 2018: 1328-32.
- 91 Druckler S, van Rooijen MS, de Vries HJC. Substance Use and Sexual Risk Behavior Among Male and Transgender Women Sex Workers at the Prostitution Outreach Center in Amsterdam, the Netherlands. Sex Transm Dis. 2020: 114-21.
- 92 van Dulm E, Marra E, Kroone MM, van Dijk AE, Hogewoning AA, Schim van der Loeff MF. Sexually transmissible infections among female sex workers in Amsterdam between 2011 and 2016: does risk vary by work location? Sex Health. 2020: 368-76.
- 93 Vernazza PL, Rasi M, Ritzler M, Dost F, Stoffel M, Aebi-Popp K, et al. The Swiss STAR trial an evaluation of target groups for sexually transmitted infection screening in the sub-sample of women. Swiss Med Wkly. 2020: w20393.
- 94 Verougstraete N, Verbeke V, De Canniere AS, Simons C, Padalko E, Coorevits L. To pool or not to pool? Screening of *Chlamydia trachomatis* and *Neisseria gonorrhoeae* in female sex workers: pooled versus single-site testing. Sex Transm Infect. 2020: 417-21.
- 95 Vu F, Cavassini M, D'Acremont V, Greub G, Jaton K, Masserey E, et al. Epidemiology of sexually transmitted infections among female sex workers in Switzerland: a local, exploratory, cross-sectional study. Swiss Med Wkly. 2020: w20357.
- 96 Ferrer L, Gonzalez V, Martro E, Folch C, Saludes V, Munoz R, et al. High HIV/STI prevalence among cisgender men and transgender women sex workers attending community-based centres in Barcelona, Spain: The Sweetie Project. Int J STD AIDS. 2022;:1045-53.
- 97 Sultan B, Lincoln S, Ghosh I, Francis M, Surey J, Gisby R, et al. High prevalence of sexually transmitted infections, homelessness and drug use among street- based sex workers in London: results from a pilot intervention of mobile outreach testing and treatment. HIV Medicine. 2021: 24-119.
- 98 Silva J, Cerqueira F, Teixeira AL, Campainha R, Amorim J, Medeiros R. Prevalence of *Neisseria gonorrhoeae* and *Trichomonas vaginalis* in Portuguese women of childbearing age. J Obstet Gynaecol. 2021: 254-8.
- 99 Bigler D, Surial B, Hauser CV, Konrad T, Furrer H, Rauch A, et al. Prevalence of STIs and people's satisfaction at a general population STI testing site in Bern, Switzerland. Sex Transm Infect. 2023: 268-71.
- 100 Farr A, Kiss H, Hagmann M, Holzer I, Kueronya V, Husslein PW, et al. Evaluation of the vaginal flora in pregnant women receiving opioid maintenance therapy: a matched case-control study. BMC Pregnancy Childbirth. 2016;16(1): 206.
- 101 Bolumburu C, Zamora V, Munoz-Algarra M, Portero-Azorin F, Escario JA, Ibanez-Escribano A. Trichomoniasis in a tertiary hospital of Madrid, Spain (2013-2017): prevalence and pregnancy rate, coinfections, metronidazole resistance, and endosymbiosis. Parasitol Res. 2020: 1915-23.
- 102 Leli C, Castronari R, Levorato L, Luciano E, Pistoni E, Perito S, et al. Molecular sensitivity threshold of wet mount and an immunochromatographic assay evaluated by quantitative real-time PCR for diagnosis of *Trichomonas vaginalis* infection in a low-risk population of childbearing women. Infez Med. 2016;24(2): 112-6.
- 103 Balla E, Donders GGG. Features of syphilis seropositive pregnant women raising alarms in Hungary, 2013-2016. 2018: 274-8.
- 104 Manolescu LSC, Boeru C, Caruntu C, Dragomirescu CC, Goldis M, Jugulete G, et al. A Romanian experience of syphilis in pregnancy and childbirth. Midwifery. 2019: 58-63.
- 105 Radon-Pokracka M, Piasecki M, Lachowska A, Baczkowski S, Spaczynska J, Gorecka M, et al. Assessment of the implementation of the infectious diseases screening programmes among pregnant women in the Lesser Poland region and comparison with similar programmes conducted in other European Union countries. Ginekol Pol. 2017: 151-5.
- 106 Kayaert L, Sarink D, Visser M, van Wees D, Willemstein I, Op de Coul E, et al. Sexually transmitted infections in the Netherlands in 2022. [Seksueel overdraagbare aandoeningen in Nederland in 2022]: Rijksinstituut voor Volksgezondheid en Milieu RIVM; 2023.

- 107 Dalmartello M, Parazzini F, Pedron M, Pertile R, Collini L, La Vecchia C, et al. Coverage and outcomes of antenatal tests for infections: a population based survey in the Province of Trento, Italy. J Matern Fetal Neonatal Med. 2019: 2049-55.
- 108 Ensari T, Kirbas A, Ozgu-Erdinc AS, Gokay Saygan S, Erkaya S, Uygur D, et al. An eight-year retrospective analysis of antenatal screening results for syphilis: is it still cost effective? J Infect Dev Ctries. 2015: 1011-5.
- 109 Gasbarrini N, Dubravic D, Combs L, Diskovic A, Ankiersztejn-Bartczak M, Colaiaco F, et al. Increasing integrated testing in community settings through interventions for change, including the Spring European Testing Week. BMC Infect Dis. 2021: 874.
- 110 Fernandez-Lopez L, Reyes-Uruena J, Egea L, Chernyshev A, Upmace I, Cosic M, et al. A clinical utility evaluation of dual HIV/Syphilis point-of-care tests in non-clinical settings for screening for HIV and syphilis in men who have sex with men. BMC Infect Dis. 2024;24(Suppl 1): 264.
- 111 Koksal MO, Beka H, Evlice O, Ciftci S, Keskin F, Basaran S, et al. Syphilis seroprevalence among HIVinfected males in Istanbul, Turkey. Rev Argent Microbiol. 2020;52(4): 266-71.
- 112 Marrone R, Mekombi CM, Baraghin A, Borecha BY, F, Ragusa A, et al. Screening of Schistosomiasis, Strongyloidiasis and Sexually Transmitted Infections in Nigerian Female Sex Workers Living in Rome. Pathogens. 2023.
- 113 Sekera JC, Frybert J. Analysis of drug-related infectious diseases in people who inject drugs Pilsen Region, 2003-2018. Cent Eur J Public Health. 2022: 13-9.
- 114 Borovcanin N, Ristanovic E, Todorovic M, Borovcanin M, Jovanovic M, Balint B. The use of complementary serological and molecular testing for blood-borne pathogens and evaluation of socio-demographic characteristics of intravenous drug users on substitution therapy from Sumadia district of Serbia. Vojnosanitetski pregled. 2019: 587-92.
- 115 European Centre for Disease Prevention and Control (ECDC). Chlamydia control in Europe: literature review. Stockholm: ECDC, 2014. Available from: <u>https://www.ecdc.europa.eu/en/publications-data/chlamydia-control-europe-literature-review</u>
- 116 Tsuboi M, Evans J, Davies EP, Rowley J, Korenromp EL, Clayton T, et al. Prevalence of syphilis among men who have sex with men: a global systematic review and meta-analysis from 2000–20. The Lancet Global Health. 2021;9(8): e1110-e8.
- 117 Marcus U, Mirandola M, Schink SB, Gios L, Schmidt AJ. Changes in the prevalence of self-reported sexually transmitted bacterial infections from 2010 and 2017 in two large European samples of men having sex with men–is it time to re-evaluate STI-screening as a control strategy? PLoS One. 2021;16(3): e0248582.
- 118 European Centre for Disease Prevention and Control (ECDC). EMIS-2017 The European Men-Who-Have-Sex-With-Men Internet Survey. Stockholm: ECDC, 2019. Available from: <u>https://www.ecdc.europa.eu/en/publications-data/emis-2017-european-men-who-have-sex-men-internetsurvey</u>
- 119 Chidiac O, AlMukdad S, Harfouche M, Harding-Esch E, Abu-Raddad LJ. Epidemiology of gonorrhoea: systematic review, meta-analyses, and meta-regressions, World Health Organization European Region, 1949 to 2021. Eurosurveillance. 2024;29(9): 2300226. Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2024.29.9.2300226
- 120 Korenromp EL, Mahiane SG, Nagelkerke N, Taylor MM, Williams R, Chico RM, et al. Syphilis prevalence trends in adult women in 132 countries estimations using the Spectrum Sexually Transmitted Infections model. Sci Rep. 2018;8(1): 11503.

European Centre for Disease Prevention and Control (ECDC)

Gustav III:s Boulevard 40 16973 Solna, Sweden

Tel. +46 858601000 ECDC.info@ecdc.europa.eu

www.ecdc.europa.eu

Follow ECDC on social media

Twitter: @ECDC_EU

Facebook: www.facebook.com/ECDC.EU

Linkedin: www.linkedin.com/company/ecdc/

Publications Office of the European Union