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Abstract: This study explores the role of inflammation and oxidative stress, hallmarks of COVID-19,
in accelerating cellular biological aging. We investigated early molecular markers—DNA methylation
age (DNAmAge) and telomere length (TL)—in blood leukocytes, nasal cells (NCs), and induced
sputum (IS) one year post-infection in pauci- and asymptomatic healthcare workers (HCWs) infected
during the first pandemic wave (February–May 2020), compared to COPD patients, model for “aged
lung”. Data from questionnaires, Work Ability Index (WAI), blood analyses, autonomic cardiac
balance assessments, heart rate variability (HRV), and pulmonary function tests were collected.
Elevated leukocyte DNAmAge significantly correlated with advancing age, male sex, daytime
work, and an aged phenotype characterized by chronic diseases, elevated LDL and glycemia levels,
medications affecting HRV, and declines in lung function, WAI, lymphocyte count, hemoglobin levels,
and HRV (p < 0.05). Increasing age, LDL levels, job positions involving intensive patient contact, and
higher leukocyte counts collectively contributed to shortened leukocyte TL (p < 0.05). Notably, HCWs
exhibited accelerated biological aging in IS cells compared to both blood leukocytes (p ≤ 0.05) and
NCs (p < 0.001) and were biologically older than COPD patients (p < 0.05). These findings suggest the
need to monitor aging in pauci- and asymptomatic COVID-19 survivors, who represent the majority
of the general population.

Keywords: biological aging; DNA methylation age; telomere length; post-COVID-19; healthcare
workers; paucisymptomatic; heart rate variability; respiratory function; nasal cells; induced sputum

1. Introduction

Nearly four years after the World Health Organization (WHO) declared COVID-19
a pandemic, with over 775 million confirmed cases by May 2024 [1], the long-term conse-
quences of the disease on the health of those infected remain largely unknown and are a
significant area of research for global health [2]. The term “Long COVID” describes symp-
toms that persist or develop after the acute phase of COVID-19. This includes symptoms
that last from 4 to 12 weeks after the acute phase, as well as post-COVID-19 syndrome,
which refers to symptoms lasting more than 12 weeks and not explained by an alternative
diagnosis [3].

While extensive research has focused on post-COVID-19 conditions in severely ill
patients [4], there has been less attention on those with mild or asymptomatic infections,
such as many healthcare workers (HCWs). Of 81 studies on post-COVID prevalence
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symptoms up to one year after infection [5–7], only 8 studies focused on pauci- and
asymptomatic subjects after one year [8–15]. Furthermore, despite mild initial symptoms,
28% to 76% of these individuals developed post-COVID-19 syndrome. A one-year follow-
up study on a mixed population (hospitalized and non-hospitalized patients) conducted by
Lombardo et al. [13] highlighted that more severe impairment in the acute phase did not
appear to predict more serious complications. This gap is particularly important as these
individuals represent a large portion of the population and underscore the importance of
monitoring and supporting all COVID-19 patients, regardless of the initial severity of their
symptoms, to adequately manage long-term complications.

Inflammation and oxidative stress, hallmarks of COVID-19 disease, play a key role in
cell biological aging, supporting the hypothesis of its acceleration in COVID-19 [16]. At
the cellular level, two interconnected “pillars of aging” are the earliest targets of cellular
aging, i.e., telomere length (TL) and DNA methylation age (DNAmAge) [17,18]. One study
reported evidence of biological age acceleration (i.e., epigenetic age acceleration and telom-
ere shortening) in severe COVID-19 patients [16] as well as in COVID-19 survivors [19],
whereas Franzen et al. [20] reported no epigenetic age acceleration in COVID-19 patients.
Furthermore, in our recent work, we demonstrate that the lung becomes older than blood,
as measured by both TL and DNAmAge in induced sputum (IS) cells from the deep air-
ways, compared to circulating blood leukocytes in the same COPD patients, chronically
exposed to inflammatory injury [21]. COVID-19 infection and the consequent pulmonary
oxidative–inflammatory reaction lead to structural and functional pathological changes
in the lung and also postulate accelerated lung aging. To date, no one has investigated
biological age indicators in pauci- and asymptomatic COVID-19 patients in different tissues
other than blood, such as nasal cells (NCs) and IS cells from the deep airways, which are
tissues preferentially infected by SARS-CoV-2.

The aim of this study is to assess the biological aging of blood leukocytes and target
tissues of the infection (i.e., IS and NCs) in SARS-CoV-2-positive HCWs of the first wave
(February–May 2020) recruited at the health surveillance visit of approximately 12 months
after infection and to verify the long-term sequelae of the infection and the impact on
work capacity.

Given the global impact of the COVID-19 pandemic, studying the potential influence
of SARS-CoV-2 infection on accelerated biological aging is of significant public health,
economic, and social relevance. For the first time, we are examining this effect not only in
the blood but also in the target tissues primarily exposed to the virus. This research will
enable the development of personalized strategies to facilitate a full return to work.

2. Results
2.1. Post-COVID Syndrome (PCS) and Symptom Prevalence

In Table 1, the prevalence of PCS symptoms in the HCWs cohort (n = 76) at 12 weeks
was higher in women than men (p = 0.0043) but similar after 1 year (p = 0.5238). However,
after 1 year, symptoms decreased in women (p = 0.0204) while persisting in men (p = 0.9999).
Figure 1 shows the percentage distribution of persistent COVID-19 symptoms reported
by the HCWs cohort (n = 76) up to 4 weeks, from 4 to 12 weeks, beyond 12 weeks after
diagnosis (NICE guidelines [22]), and at the 1-year follow-up. Dyspnea, palpitations,
peripheral neuropathy, loss of concentration, memory problems, and anxiety, as well as
rare symptoms like dermatological signs, persisted beyond 12 weeks and at the 1-year
follow-up (p > 0.05). However, brain fog, sleep disorders, depression, and less frequent
symptoms, including ocular symptoms, persisted beyond 12 weeks but not after 1 year
(p > 0.05). All data are presented in Supplementary Table S1. Supplementary Figure S1
shows that in 30% of HCWs, symptoms persisted 1 year after SARS-CoV-2 infection.
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Table 1. Prevalence of symptoms (post-COVID syndrome—PCS) in the HCWs cohort (n = 76) divided
by sex and period since infection.

PCS > 12 Weeks PCS~1 Year P_Trend

HCWs 0.4605 0.3026 0.0663

Women 0.5741 0.3333 0.0204

Men 0.1818 0.2273 0.9999

P_Trend 0.0043 0.5238
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Figure 1. Percentage distribution of persistent COVID-19 symptoms reported by the HCWs up
to 4 weeks, from 4 to 12 weeks, more than 12 weeks after diagnosis, and at the time of the visit
(1-year follow-up) (n = 76 HCWs). The bar chart illustrates the percentage distribution of COVID-19
symptoms reported by HCWs up to 4 weeks (green), from 4 to 12 weeks (blue), more than 12 weeks
after diagnosis (orange), and at the 1-year follow-up (red).

2.2. Blood Leukocyte Biological Age

The mean values and standard deviations of blood leukocyte DNAmAge, AgeAcc,
and TL for all HCWs (n = 76) are reported in Supplementary Table S2. Simple linear
regression analyses confirmed that blood leukocyte DNAmAge positively correlated with
chronological age (Figure 2A, r = 0.9433, p < 0.0001), and blood leukocyte TL negatively
correlated with chronological age (Figure 2B, r = −0.3217, p = 0.0046). Increased blood
leukocyte DNAmAge, but not TL, was associated with the duration of COVID-19 infection
(Figure 3A, r = 0.0618, p = 0.596; Figure 3B, r = 0.2378, p = 0.0386). Additionally, subjects
with greater biological age, detected by DNAmAge and TL, showed lower WAI (Figure 4A,
DNAmAge r = −0.5169, p < 0.0001; Figure 4B, TL r = 0.2828, p = 0.0194).
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Figure 2. Correlation curves between blood leukocyte DNAmAge (A) or TL (B) and chronological 

age of n= 76 HCW COVID-19 survivors. In (A), a simple linear regression plot shows the correlation 

between blood leukocyte DNAmAge and chronological age [correlation coefficient (r) = 0.9433; two-

sided p < 0.0001], while in (B), a simple linear regression plot shows the correlation between blood 

leukocyte TL and chronological age [correlation coefficient (r) = −0.3217; two-sided p = 0.0046]. 

Mean, standard error (SE), and 95% coefficient intervals (CIs) are represented as green, pink, and 
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Figure 2. Correlation curves between blood leukocyte DNAmAge (A) or TL (B) and chronolog-
ical age of n= 76 HCW COVID-19 survivors. In (A), a simple linear regression plot shows the
correlation between blood leukocyte DNAmAge and chronological age [correlation coefficient
(r) = 0.9433; two-sided p < 0.0001], while in (B), a simple linear regression plot shows the corre-
lation between blood leukocyte TL and chronological age [correlation coefficient (r) = −0.3217;
two-sided p = 0.0046]. Mean, standard error (SE), and 95% coefficient intervals (CIs) are represented
as green, pink, and black lines, respectively. Values for each subject are shown as green circles.
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Figure 3. Correlation curves between blood leukocyte TL (A) or DNAmAge (B) and duration of
infection (days) in n = 76 HCW COVID-19 survivors. In (A), a simple linear regression plot shows
the correlation between blood leukocyte TL and days of infection [correlation coefficient (r) = 0.0618;
two-sided p = 0.596], while in (B), a simple linear regression plot shows the correlation between blood
leukocyte DNAmAge and days of infection [correlation coefficient (r) = 0.2378; two-sided p = 0.0386].
Mean, standard error (SE), and 95% coefficient intervals (CIs) are represented as green, pink, and
black lines, respectively. Values for each subject are shown as green circles.
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Index (WAI) in n = 76 HCW COVID-19 survivors. In (A), a simple linear regression plot shows the
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correlation between blood leukocyte DNAmAge and WAI score [correlation coefficient (r) = 0.5169;
two-sided p < 0.0001], while in (B), a simple linear regression plot shows the correlation between
blood leukocyte TL and WAI score [correlation coefficient (r) = 0.2828; two-sided p = 0.0194]. Mean,
standard error (SE), and 95% coefficient intervals (CIs) are represented as green, pink, and black lines,
respectively. Values for each subject are shown as green circles.

2.3. Determinants of Blood Leukocyte DNAmAge and TL

Multiple linear regression analysis (Table 2) indicated that an increase in blood leuko-
cyte DNAmAge was determined by age (p < 0.0001), being male (p = 0.014), presence
of chronic diseases (p = 0.029), decline in lung function (FEV1, p = 0.0014), and decrease
in lymphocyte count (p = 0.002). Decreased blood leukocyte TL was determined by age
(p = 0.003) and reduced lymphocyte count (p = 0.033).

Table 2. Multiple regression analysis of the influence of age, sex, presence of chronic diseases, decline
in lung function (FEV1), and lymphopenia on blood leukocyte DNAmAge/LTL.

Blood
Leukocyte
DNAmAge
(years)

b r t Value p

Age b1 = 0.74399 r = 0.911647 t = 17.884209 <0.0001

Sex (male) b2 = 2.703646 r = 0.298937 t = 2.525593 0.014

Chronic
diseases (0 = no;
1 = yes)

b3 = 1.860584 r = 0.266824 t = 2.23213 0.0291

FEV1 (L) b4 = −2.219589 r = −0.382602 t = −3.338666 0.0014

Lymphocytes
(109/L) b5 = −2.017434 r = −0.36957 t = −3.206587 0.0021

Blood
Leukocyte
TL (T/S)

Age b1 = −0.011446 r = −0.363521 t = −3.146031 0.0025

Sex (male) b2 = 0.004352 r = 0.005765 t = 0.046482 0.9631

Chronic
diseases (0 = no;
1 = yes)

b3 = 0.131573 r = 0.218459 t = 1.804868 0.0757

FEV1 (L) b4 = −0.023505 r = −0.05008 t = −0.404266 0.6873

Lymphocytes
(109/L) b5 = 0.120086 r = 0.261295 t = 2.182445 0.0327

Abbreviations: DNAmAge = DNA methylation age; FEV1 = forced expiratory volume in the 1st second;
LTL = leukocyte telomere length.

Multiple regression analysis (Table 3) showed that an increase in blood leukocyte
DNAmAge correlated with a decrease in WAI (p = 0.0015) and daytime work (p = 0.0325)
but not job position (p = 0.4352). Blood leukocyte TL decreased with job positions involving
direct patient contact (healthcare assistants, nurses, doctors, residents) (p = 0.0295) but not
with WAI (p = 0.2268) or daytime work (p = 0.1864).

Multiple regression analysis of the influence of hemoglobin (g/dL), glycemia (mg/dL),
cholesterol (mg/dL), triglycerides (mg/dL), HDL (mg/dL), LDL (mg/dL), creatinine
(mg/dL), and bilirubin (mg/dL) on blood leukocyte DNAmAge and TL (Table 4) revealed
that higher DNAmAge was associated with lower hemoglobin (p = 0.0163), higher glycemia
(p = 0.0078), and higher LDL (p = 0.0015). Shorter TL was associated only with higher
LDL levels (p = 0.0506). Cholesterol, triglycerides, HDL, creatinine, and bilirubin were not
determinants of biological aging indicators.
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Table 3. Multiple regression analysis of the influence of occupation or professional position, night
shift work, and Work Ability Index (WAI) on blood leukocyte DNAmAge/TL.

Blood
Leukocyte
DNAmAge
(years)

b r t Value p

Occupation
(0 = HA; 1 = N;
2 = D; 3 = R;
4 = T and A)

b1 = −0.727891 r = −0.097697 t = −0.785337 0.4352

Night shift work
(0 = no; 1 = yes) b2 = −5.367146 r = −0.263551 t = −2.185686 0.0325

WAI b3 = −0.617807 r = −0.382432 t = −3.311157 0.0015

Blood
Leukocyte
TL (T/S)

Occupation
(0 = HA; 1 = N;
2 = D; 3 = R;
4 = T and A)

b1 = 0.064564 r = 0.268124 t = 2.226516 0.0295

Night shift work
(0 = no; 1 = yes) b2 = 0.102616 r = 0.164683 t = 1.3357 0.1864

WAI b3 = 0.007125 r = 0.150818 t = 1.220504 0.2268
Abbreviations: HA = healthcare assistant, N = nurse, D = doctor, R = resident, T and A = technician and administrator.

Table 4. Multiple regression analysis of the influence of hemoglobin (g/dL), glycemia (mg/dL),
cholesterol (mg/dL), triglycerides (mg/dL), HDL (mg/dL), LDL (mg/dL), creatinine (mg/dL), and
bilirubin (mg/dL) on blood leukocyte DNAmAge/TL.

Blood
Leukocyte
DNAmAge
(years)

b r t Value p

Hemoglobin (g/dL) b1 = −0.205578 r = −0.300885 t = −2.484288 0.0157

Glycaemia (mg/dL) b2 = 0.2006 r = 0.329513 t = 2.748063 0.0078

Cholesterol (mg/dL) b3 = 0.006919 r = 0.022835 t = 0.179853 0.8579

Triglycerides (mg/dL) b4 = 0.003211 r = 0.01292 t = 0.101744 0.9193

HDL (mg/dL) b5 = 0.063761 r = 0.098495 t = 0.779342 0.4387

LDL (mg/dL) b6 = 0.172631 r = 0.388744 t = 3.322289 0.0015

Creatinine (mg/dL) b7 = 0.267526 r = 0.205048 t = 1.649598 0.1041

Bilirubin (mg/dL) b8 = 0.022068 r = 0.028541 t = 0.224826 0.8229

Blood
Leukocyte
TL (T/S)

Hemoglobin (g/dL) b1 = 0.003138 r = 0.141452 t = 1.125107 0.2649

Glycaemia (mg/dL) b2 = −0.00175 r = −0.089968 t = −0.711294 0.4796

Cholesterol (mg/dL) b3 = −0.000016 r = −0.001611 t = −0.012687 0.9899

Triglycerides (mg/dL) b4 = 0.001514 r = 0.177891 t = 1.42342 0.1596

HDL (mg/dL) b5 = −0.000176 r = −0.008083 t = −0.06365 0.9495

LDL (mg/dL) b6 = −0.003492 r = −0.245463 t = −1.993777 0.0506

Creatinine (mg/dL) b7 = −0.0017 r = −0.039478 t = −0.311094 0.7568

Bilirubin (mg/dL) b8 = −0.000485 r = −0.018608 t = −0.146549 0.884
Abbreviations: HDL = high-density lipoprotein, LDL = low-density lipoprotein.

Multiple regression analysis of the influence of mean HR and HRV parameters
(i.e., SDNN, RMSSD) and drugs affecting HRV (i.e., antidepressants, beta-blockers, cal-
cium channel blockers, inhaled or oral beta-mimetics, theophylline, and alpha-adrenergic
agonists) on blood leukocyte DNAmAge and TL (Table 5) indicated that increased DNAm-
Age correlated with low mean HR and drug use affecting HRV but not with other HRV
parameters. No significant correlations were found for TL.



Int. J. Mol. Sci. 2024, 25, 8056 8 of 26

Table 5. Multiple regression analysis of the influence of mean HR, HRV parameters (i.e., SDNN,
RMSSD), and drugs affecting HRV (i.e., antidepressants, beta-blockers, calcium channel blockers,
inhaled or oral beta-mimetics, theophylline, and alpha-adrenergic agonists) on blood leukocyte
DNAmAge/TL.

Blood
Leukocyte
DNAmAge
(years)

b r t Value p

SDNN b1 = −0.311272 r = −0.186422 t = −1.564708 0.1223

RMSSD b2 = 0.14605 r = 0.114644 t = 0.95165 0.3446

Mean HR b3 = −0.403812 r = −0.356467 t = −3.14618 0.0025

Drugs affecting
HRV (0 = no;
1 = yes)

b4 = 8.905208 r = 0.297306 t = 2.567761 0.0124

Blood
Leukocyte
TL (T/S)

SDNN b1 = 0.008358 r = 0.166005 t = 1.388176 0.1696

MSSD b2 = −0.006522 r = −0.167858 t = −1.404117 0.1648

Mean HR b3 = 0.005025 r = 0.154982 t = 1.293644 0.2002

Drugs affecting
HRV (0 = no;
1 = yes)

b4 = 0.154968 r = 0.176234 t = 1.476368 0.1445

Abbreviations: SDNN = standard deviation of normal-to-normal RR intervals, RMSSD = root mean square of
successive RR interval differences, HR = heart rate.

Multiple linear regression analysis of the influence of leukocytes (109/L) and different
blood cell counts, including neutrophils (109/L), lymphocytes (109/L), and monocytes
(109/L), on blood leukocyte DNAmAge and TL (Supplementary Table S3) showed positive
correlations between TL and neutrophils (p = 0.0006) and lymphocytes (p = 0.0046) and
negative correlations with leukocytes (p = 0.0344) but not with monocytes. DNAmAge was
not determined by leukocytes, neutrophils, lymphocytes, or monocytes (p > 0.05).

2.4. Biological Age of Blood Leukocytes, IS Cells, and NCs

Supplementary Table S4 reports the number of subjects and mean values of biological
aging indicators, i.e., DNAmAge, AgeAcc, and TL, in blood leukocytes, NCs, and IS cells.
DNAmAge of blood leukocytes (Figure 2A, r = 0.9433, p < 0.0001), NCs, and IS cells
(Figure S2, A, r = 0.8015, p < 0.0001; B, r = 0.9279, p < 0.0001) was positively correlated
with chronological age, while TL of blood leukocytes (Figure 2B, r = −0.3217, p = 0.0046),
but not of IS cells (Figure S2C, r = −0.2641, p = 0.2897), was negatively correlated with
chronological age. Insufficient DNA prevented TL analysis in NC samples.

Figure 5A shows that in a subset of 17 HCWs with all tissue samples, the IS DNAmAge
was higher than blood leukocytes (p = 0.0011) and NCs (p = 0.0003), and NC DNAmAge
was lower than blood leukocytes (p = 0.0028). Similarly, Figure 5B reports that IS TL was
shorter than blood leukocytes in the same patients (p = 0.05).

2.5. Correlations between Biological Aging Indicators

Simple linear regression analyses (Figure S3) showed positive correlations between
DNAmAge of blood leukocytes and NCs (A, r = 0.8207; p < 0.0001) and IS cells (B, r = 0.9353;
p < 0.0001) but no correlation between TL of blood leukocytes and IS cells (C, r = −0.0222;
p = 0.9304).

2.6. Comparison of Biological Aging in HCWs and COPD Patients

Comparing HCWs (n = 17) with COPD patients (n = 7), HCWs showed greater bi-
ological aging in blood and IS cells, including higher AgeAcc (Table 6: blood leukocyte
AgeAcc, p = 0.0002; IS AgeAcc, p = 0.012) and shorter TL (Table 6: predicted blood and IS
TL, p < 0.0001) one year after SARS-CoV-2 infection resolution.
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2.5. Correlations Between Biological Aging Indicators

Figure 5. DNAmAge and TL of blood leukocytes, NCs, and IS cells in the subgroup of n = 17 HCW
COVID-19 survivors. In (A), box plots show levels of DNAmAge (years) in blood leukocytes, NCs,
and IS cells in the subgroup of n = 17 HCW COVID-19 survivors from whom all three tissue samples
were collected. In box plots, the boundary of the box closest to the x-axis indicates the 25th percentile,
the line within the box and the rhombus mark the mean, and the boundary of the box farthest from
the x-axis indicates the 75th percentile. Whiskers (error bars) above and below the box indicate the 95
and 5th percentiles. The horizontal bar with asterisks indicates the significant comparison between
blood leukocytes and paired NCs of the same subject (** paired t-test: mean 43.4 ± 12.9 years vs.
mean 37.6 ± 14.0 years; p = 0.0028), NCs and paired IS cells of the same subject (*** paired t-test:
mean 37.6 ± 14.0 years vs. mean 47.1 ± 12.4 years; p = 0.0003), and blood leukocytes and paired
IS cells of the same subject (*** paired t-test: mean 43.4 ± 12.9 years vs. mean 47.1 ± 12.4 years;
p = 0.0011). In (B), box plots show levels of TL in blood leukocytes and paired IS cells of n = 17 HCW
COVID-19 survivors. In box plots, the boundary of the box closest to the x-axis indicates the 25th
percentile, the line within the box and the rhombus mark the mean, and the boundary of the box
farthest from the x-axis indicates the 75th percentile. Whiskers (error bars) above and below the box
indicate the 95th and 5th percentiles. The black dot indicates an outlier. The horizontal bar with an
asterisk indicates the significant comparison between blood leukocytes and paired IS cell TL of the
same patient (* paired t-test (n = 7): mean 1.15 ± 0.32 T/S vs. mean 0.88 ± 0.43 T/S; p = 0.05).
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Table 6. AgeAcc and predicted TL post-COVID-19 subjects and COPD patients.

Post-COVID-19 Subjects

N = 17 Age Blood AgeAcc
(years)

IS AgeAcc
(years)

Predicted
Blood TL (T/S)

Predicted IS
TL (T/S)

Mean ± SD 46.00 ± 12.88 −2.59 ± 3.47 *§ 1.12 ± 4.37 § 1.20 ± 0.06 *§ 0.93 ± 0.02 §

COPD patients

N = 7 Age Blood AgeAcc
(years)

IS cells
AgeAcc (years)

Predicted
Blood TL (T/S)

Predicted IS
TL (T/S)

Mean ± SD 72.43 ± 6.00 −10.29 ± 3.50 * −4.29 ± 5.15 1.31 ± 0.03 * 0.97 ± 0.01
Abbreviations: AgeAcc = age acceleration; IS = induced sputum; TL = telomere length. * Paired t-test: Post-COVID-19
subjects. Blood AgeAcc versus IS AgeAcc (two-sided p = 0.0011). Predicted blood TL (T/S) vs. predicted IS TL
(T/S) (two-sided p < 0.0001). COPD patients. Blood AgeAcc versus IS AgeAcc (two-sided p = 0.0006). Blood TL
versus IS TL (two-sided p < 0.0001). § Mann–Whitney U test: Post-COVID-19 blood AgeAcc versus COPD blood
AgeAcc (two-sided p = 0.0002). Post-COVID-19 IS AgeAcc versus COPD IS AgeAcc (two-sided p = 0.012). Post-
COVID-19 predicted blood TL (T/S) vs. COPD predicted vlood TL (T/S) (two-sided p < 0.0001). Post-COVID-19
predicted IS TL (T/S) vs. COPD predicted IS TL (T/S) (two-sided p < 0.0001).

3. Discussion

This study offers groundbreaking insights into the biological aging, long-term sequelae,
and their impact on work ability in pauci- and asymptomatic HCWs of the University
Hospital of Padua who survived COVID-19 during the first wave (February–May 2020).
We also assessed the biological aging of blood leukocytes, NCs, and IS cells in HCWs and
compared them to a control group of COPD patients, who are considered a model group for
“aged lung” resulting from continuous inflammatory action affecting these patients [23].

3.1. PCS and Symptom Prevalence

At 12 weeks, PCS symptoms were more prevalent in women than men, consistent
with Ortona et al.’s findings that women are twice as likely as men to develop PCS until
around the age of 60 [24]. Given our population’s median age of 47.5 years and a peak age
of 66 years, this trend is confirmed. Women make up about 71% of our study population
and dominate the healthcare workforce, with the WHO reporting that women constitute
67% of the global health and social care workforce [25]. This demographic representation
explains the higher prevalence of PCS among women in our study. Furthermore, the
autoimmune hypothesis posits that women’s stronger immune response, influenced by
genetic and hormonal factors, leads to a higher incidence of PCS [24,26]. After 1 year,
symptom prevalence was similar between genders, with symptoms decreased in women
but persisted in men. This persistence is an ongoing area of investigation. Overall, 30% of
HCWs reported persistent symptoms 1 year post-infection. This is in line with previous
studies in paucisymptomatic individuals, reporting similar rates at one year [11,27,28]
and even two years post-infection [29]. Persistent symptoms such as dyspnea, palpita-
tions, peripheral neuropathy, anxiety, loss of concentration, and memory problems were
observed approximately one year after infection, confirming earlier findings [14,27]. These
underscore the need for ongoing research and tailored healthcare strategies to manage the
long-term effects of PCS, particularly among HCWs, who represent our study cohort.

3.2. Determinants of Increased Blood Leukocyte DNAmAge
3.2.1. Sex-Related DNAmAge Differences

Male sex is significantly associated with increased DNAmAge, corroborating findings
from Oblak et al. [30]. This aligns with the male–female health survival paradox, where
males typically have shorter lifespans than females, who tend to experience higher rates of
disability and poor health [31], again supporting the need for sex-specific health strategies.

3.2.2. Impact of SARS-CoV-2 Infection

Increased leukocyte DNAmAge correlates with the duration of SARS-CoV-2 infection
(average 17 days) because prolonged infections lead to sustained inflammatory responses
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and cellular stress, which induce significant epigenetic changes [32–35]. This mechanism
is similar to that observed in other viral infections like HIV [36–38] and SARS-CoV-2
infection [16], where extended viral presence exacerbates epigenetic modifications, thus
increasing DNAmAge. This insight is crucial for developing post-infection management
strategies, particularly for those with extended infection durations, to mitigate accelerated
aging effects.

3.2.3. Chronic Diseases and DNAmAge

Our findings confirm that chronic diseases are linked to elevated DNAmAge, consis-
tent with previous research on frailty [39], cancer [40], diabetes [41], cardiovascular diseases
(CVDs) [42], dementia [43], and decreased lung function (FEV1) in COPD patients [21],
a known consequence of aging [44–46]. This underscores the importance of managing
chronic diseases to potentially slow down the biological aging process and improve overall
health outcomes.

3.2.4. Lung Function and DNAmAge

We also found a correlation between the acceleration in DNAmAge and the decline in
lung function measured by forced expiratory volume (FEV1), which is a well-documented
consequence of aging [44–46]. This finding is consistent with our previous work on COPD
patients [21]. Therefore, DNAmAge appears to be a reliable signature of the epigenetic
aging chronic disease-related.

3.2.5. Lipid Levels and DNAmAge

We identified a positive association between DNAmAge and LDL levels. Even if our
finding contrasts with an unexpected inverse association reported by Ammous et al. [47], it
aligns with the hypothesis on the detrimental health effects of these lipids [48,49], which are
connected to an increased risk of CVD [50–52], and suggests that lipid management could
be integral to mitigating accelerated aging. This highlights the need for comprehensive
lipid monitoring and management strategies in PCS patients.

3.2.6. Blood Glucose and DNAmAge

Our study also found a positive correlation between DNAmAge and blood glucose,
which showed consistent and stronger associations with CVD risk factors in patients
with diabetes (Borg et al., 2011). This correlation underscores the critical role of glucose
regulation in aging. High blood glucose contributes to oxidative stress and inflammation,
leading to epigenetic changes that increase DNAmAge. Effective glycemic control is crucial
for slowing biological aging, particularly in diabetic populations, as highlighted by recent
research [53].

3.2.7. Work Capacity and DNAmAge

The higher DNAmAge found in daytime workers may be attributed to older age, as
they transition to daytime roles due to the challenges of night shifts. Furthermore, HCWs
with greater DNAmAge showed lower WAI scores, marking this as the first study to link
leukocyte DNAmAge with WAI, consistent with the decline in work capacity due to aging
and chronic diseases [54,55]. Work capacity, measured by WAI, refers to an individual’s
perception of the balance between work demands and their ability to cope with them [56],
resulting from the interaction between psychosocial and physical work-related elements,
mental and physical capabilities, and health issues [57,58]. Our finding calls for workplace
interventions to support aging workers, such as job modifications and health promotion
programs, to sustain their work ability and productivity.

3.2.8. Lymphocyte Counts and DNAmAge

We observed a negative correlation between DNAmAge and lymphocyte counts.
Aging is known to reduce the number of B cells and CD4+ and CD8+ T cells, increas-
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ing memory T cells while decreasing naïve T cells [59]. This finding is supported by
Zhang et al. [60], who noted variations in epigenetic age depending on lymphocyte sub-
populations. Strategies to also support immune health could play a role in mitigating
DNAmAge increases, especially in the aging workforce

3.2.9. Hemoglobin Levels and DNAmAge

An association between higher DNAmAge and lower hemoglobin levels was found,
reflecting the intertwined nature of aging and hematological health. Lower hemoglobin
levels are indicative of anemia, which is common in older adults and linked to increased
biological aging. This condition is often linked to increased biological aging due to its
association with chronic inflammation, oxidative stress, and decreased erythropoiesis [61].
Monitoring and addressing hemoglobin levels can be beneficial in managing age-related
health risks and potentially mitigating accelerated biological aging.

3.2.10. HR, HRV, and DNAmAge

We found a relationship between increased DNAmAge and low mean HR. Basal and
non-basal HR decreases with age, and elderly people are more prone to bradycardia [62],
and even HRV decreases with age [63]. DNAmAge is a marker of aging associated with
pathological conditions [64]. Increased DNAmAge signifies accelerated biological aging, ex-
acerbated by factors like chronic stress and infections. COVID-19 survivors show increased
DNAmAge [19] and reduced mean HR one year after SARS-CoV-2 infection compared
to the post-acute phase [65], highlighting the impact of infections on biological aging.
Maintaining HR and HRV through interventions could mitigate accelerated aging.

Furthermore, we noted an association between drugs affecting HRV and higher leuko-
cyte DNAmAge. Drugs such as beta-blockers, calcium channel blockers, inhaled or oral
beta-mimetics, theophylline, and alpha-adrenergic agonists like phenylephrine infusion can
interfere with HRV [65,66]. While limited research exists, some studies indicate antihyper-
tensives like calcium channel blockers may reduce DNAmAge [67]. Therefore, our findings
highlight the need for further investigation into the effects of other HRV-modifying drugs
on DNAmAge and elucidate the underlying biological mechanisms. Further research is
necessary to elucidate the biological mechanisms and optimize pharmacological strategies
to minimize adverse effects on biological aging.

Lastly, we established the robust positive correlation between DNAmAge and chrono-
logical age, reinforcing the accuracy of our analysis and the predictive strength of our model.
This consistency with established methodologies [68,69] underscores that DNAmAge is a
reliable biomarker for biological aging.

3.3. Determinants of Shorter Blood Leukocyte TL

Our study established a negative correlation between leukocyte TL and chrono-
logical aging, consistent with the existing literature, such as the systematic review by
Müezzinler et al. [70] across 124 cross-sectional studies, which reported a similar negative
correlation (r = 0.3).

3.3.1. WAI

HCWs with shorter leukocyte TL exhibit lower WAI, reflecting accelerated biolog-
ical aging. Chronic job-related stress and inflammation accelerate telomere shortening,
impairing cellular repair and function [71]. This relationship is biologically plausible
as shorter TL indicates advanced cellular aging, which reduces physical and cognitive
capacity, impacting work ability. The parallel with epigenetic age (DNAmAge) further
supports this connection, highlighting the detrimental effects of occupational stress on
aging markers and work capacity. Interventions to reduce stress could improve HCWs’
health and work performance.
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3.3.2. LDL Levels and Cardiovascular Disease

Our research supports the well-documented association between shorter TL and CVD,
alongside elevated LDL levels as a major risk factor [72]. The observed correlation between
shorter leukocyte TL and higher LDL levels contributes another piece to this controversial
area, aligning with some previous studies [73–77] while contradicting others [76,78–80].
This underscores the need for further investigation into the interplay between lipid levels
and TL.

3.3.3. Blood Leukocyte TL and Job Position

The observation that blood leukocyte TL is decreased in HCWs involved in direct
patient contact (assistants, nurses, doctors, and residents) can be explained by a few key
mechanisms. HCWs face high levels of chronic stress due to long hours, high workload,
and emotional strain [81]. Chronic stress increases cortisol levels, which can lead to
oxidative stress and inflammation. Elevated cortisol from chronic stress increases oxidative
stress, producing reactive oxygen species (ROS) that damage cells and DNA, including
telomeres [71]. Frequent exposure to pathogens (viruses and bacteria) in healthcare settings
triggers immune responses, increasing leukocyte replication and further contributing to
telomere shortening [82–84]. Overall, the combination of chronic stress, oxidative stress,
inflammation, and frequent exposure to pathogens leads to accelerated telomere shortening
in HCWs involved in direct patient contact.

3.3.4. Lymphocyte Numbers

We observed a relationship between TL shortening and a decrease in lymphocyte
numbers. Although lymphocytes experience a faster rate of age-dependent TL shortening
than granulocytes [85], recent studies have shown significant reductions in lymphocyte
numbers among healthy COVID-19 survivors [86]. Furthermore, our analysis revealed that
TL shortening was associated with an increased total leukocyte count, primarily driven by
monocytes. This is in line with findings of generalized low-grade inflammation, T lympho-
cyte senescence, and increased monocyte activation in individuals with long COVID [87].
Mean leukocyte TL is considered an indicator of biological aging [88]. Our findings, linking
TL shortening to lymphocyte reduction, expand on this understanding, suggesting novel
mechanisms underlying TL dynamics in relation to immune cell populations and chronic
stress responses.

These innovative results provide new insights into the determinants of leukocyte TL,
advancing our comprehension of biological aging and its interaction with chronic disease,
stress, and occupational factors.

3.4. Biological Age of the Blood Leukocytes, IS Cells, and NCs Determined by DNAmAge and TL

Our study uniquely analyzed DNAmAge and TL in blood leukocytes, IS cells, and
NCs from the same cohort of 17 HCWs who survived COVID-19. This comprehensive
comparison revealed that IS cells exhibit a higher biological age than both blood leukocytes
and NCs. Specifically, IS cells demonstrated higher DNAmAge and shorter TL, while NCs
had a lower DNAmAge compared to blood leukocytes, indicating different aging rates
within the same individuals.

3.4.1. Tissue-Specific Aging Rates

The accelerated aging observed in IS cells compared to blood leukocytes and NCs
confirms that different tissues and organs age at varying rates within the same individuals.
This aligns with previous findings on heart, kidney, and COPD patients [21,89,90], showing
tissue-specific aging rates [68]. The study also suggests that cells in the deeper airways
of COVID-19 survivors are more susceptible to epigenetic changes than those in more
superficial airways and blood leukocytes [21].
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3.4.2. COVID-19 Impact on DNAmAge and TL

Our study supports existing research showing that COVID-19 significantly alters DNA
methylation profiles, particularly in critically ill patients [91,92]. These epigenetic changes
persist even after recovery, suggesting long-term impacts on gene expression and cellular
function [34,93–95]. Additionally, shorter telomeres are associated with severe COVID-19
and lingering post-COVID-19 conditions, supporting the hypothesis that telomere attrition
plays a role in the pathology of COVID-19 [96–98]. Telomere shortening can lead to cellular
aging and reduced regenerative capacity, contributing to the severe and long-lasting effects
observed in COVID-19 patients [96,99,100]. Our findings agree with other studies that have
documented accelerated biological aging in various tissues due to COVID-19 [16,19,101],
emphasizing the need for further research into the long-term effects of the virus on cellular
health and aging.

3.4.3. Biological Implications of Telomere Shortening in IS Cells

Telomere shortening, a marker of biological aging, occurs with increased cell division
and DNA replication. Our study found that IS cells, the primary target of SARS-CoV-2,
showed significant telomere shortening, supporting previous findings in alveolar epithelial
cells of COVID-19 patients [101]. This suggests that SARS-CoV-2 infection accelerates
telomere shortening due to an enhanced proliferative response to regenerate alveolar injury,
potentially leading to long-term lung fibrosis [101,102].

3.4.4. Epigenetic Aging in IS Cells, NCs, and Implications for Surrogate Tissue Use

While the change in methylation profile is evident in the blood of COVID-19 patients
and survivors [16,19,103], there are no data yet on the other target tissues. However,
epigenetics, linking environmental and genetic factors [104], is recognized as the basis
of inflammation [105], which underpins several lung diseases like COPD, cancer, and
COVID-19 [106]. The lung is the primary target of SARS-CoV-2 infection, causing diffuse
alveolar damage, apoptotic epithelial cells, interstitial inflammation, and activated T-cell
responses resulting in a cytokine storm [107], mainly through host immune dysregulation,
increased inflammation and/or hyperinflammation. This similarity and overlap in the
pathogenetic mechanism between lung disease and COVID-19 [106], coupled with the
results of our previous study in COPD patients showing accelerated lung aging [21],
supports our finding that IS cells are older than blood leucocytes.

Interestingly, NCs were found to be biologically younger than IS cells and blood
leukocytes. This could be due to their role as the initial entry point for SARS-CoV-2 [108],
acting as a gateway to the lower respiratory tract and triggering systemic inflammation
upon viral replication [109], or as a gateway to the central nervous system [110,111].

A strong correlation was found between the DNAmAge of IS cells, NCs, and blood
leukocytes, suggesting that blood leukocytes could serve as a surrogate for studying lung
and airway aging. However, caution is advised as there was a noted six-year difference in
DNAmAge between lung tissue and blood leukocytes in post-COVID-19 patients, mirroring
findings in COPD patients [21].

3.5. Comparison of Biological Aging (AgeAcc and TL) in HCWs and COPD Patients

Given the numerous overlaps between COPD and COVID-19 [106], we compared a
group of HCWs recruited approximately one year after SARS-CoV-2 infection with a group
of COPD patients as a positive control group. COPD patients are considered a suitable
positive control group because they exemplify accelerated biological aging due to chronic
inflammation and oxidative stress [21,112–115].

Our results revealed that the blood leukocytes and IS cells of HCWs are biologically
older than those of COPD patients, as determined by AgeAcc and predicted TL. This
indicates that COVID-19 may induce more pronounced epigenetic changes and telomere
attrition than COPD.
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3.6. Limitations and Strengths

The current study has several limitations. Firstly, the lack of a control group of
COVID-19-free, age-matched subjects is a significant limitation. This was due to the
difficulty in recruiting HCWs approximately one year after infection during the first wave
(February–May 2020), when workloads were high and reinfections were common, leading
to the exclusion of these subjects from the study. To address this, we compared our HCWs
population (n = 17), for whom we had all three tissues available, with a small positive
control group of COPD patients (n = 7) known for accelerated lung aging compared
to blood leukocytes [21,112,115]. We acknowledge that the sample size of our study is
limited. However, this limitation arises from the low number of HCWs (n = 144 out of
n = 8240 HCWs) infected during the first wave of COVID-19, which is a point of pride for
our hospital. Additionally, the number was further reduced by the availability of healthcare
workers who met the inclusion criteria and were willing to participate in the study (n = 76).

The ongoing pandemic and restrictions imposed by the University Hospital of Padua
on techniques involving droplets and airborne exposure, such as spirometry and the IS
technique, limited the number of IS samples collected. Despite the limited number of
subjects (n = 17) for whom we have all three tissues (IS cells, NCs, and blood leukocytes),
our sample size estimate indicates it is sufficient to obtain statistically significant results.
Another limitation is the inability to analyze TL in NC samples due to insufficient DNA
after performing DNAmAge analysis.

Our study has several strengths. Firstly, it provides a comprehensive assessment of
biomarkers of biological aging, both genetic (TL) and epigenetic (DNAmAge), related
to various parameters, including inflammation, basic hematochemical biomarkers, lung
function indicators, and data on demographics, lifestyle, work, and physiological history.
This study involved the collaboration of many healthcare professionals, including clinicians
and researchers.

To our knowledge, this is the first study to determine the biological aging of post-
COVID-19 subjects across three different tissues collected from the same individual, com-
paring blood leukocytes with SARS-CoV-2 target tissues (IS cells and NCs). We found a
strong correlation between the DNAmAge of IS cells and NCs with that of blood leukocytes,
suggesting the potential use of blood as a surrogate indicator of the biological age of IS
cells and NCs, although further investigations are needed.

Another strength of our study is the use of a validated non-invasive airway sampling
technique, the IS technique, to study biological age indicators in IS cells. This technique
could be valuable for future research on lung biological aging, not only in COPD patients
but also in other conditions.

4. Materials and Methods
4.1. Study Design

This study is a cross-sectional study in which the established clinical protocol has been
applied to examine SARS-CoV-2-positive healthcare workers (HCWs) at the University
Hospital of Padua approximately 1 year after the diagnosis of SARS-CoV-2 infection. The
inclusion criteria were to be a SARS-CoV-2-positive HCW of the University Hospital of
Padua, not have COVID-19 vaccination, and not have had COVID-19 reinfection in the
12 months preceding the clinical visit. The study population consisted of the n = 76
among the n = 144 HCWs of the first wave (February–May 2020) who met the inclusion
criteria. They were enrolled during the health surveillance activity foreseen according to
Legislative Decree 81/2008 at the Occupational Medicine Unit approximately 12 months
after the diagnosis of SARS-CoV-2 infection with a molecular swab. Paucisymptomatic
and asymptomatic HCWs, who did not have symptoms at the time of the swab and who
continued to remain asymptomatic during the entire isolation period (at least 14 days),
were included in the study population. The local Ethics Committee approved the study
(288n/AO/22) in accordance with the principles of the Declaration of Helsinki.
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All participants were informed of the purpose of the study and provided written in-
formed consent. Subjects unwilling to participate in the study were excluded. At enrolment,
each study participant was characterized by an ad hoc structured questionnaire to collect
information on, among others, demographics, lifestyle, medical history, and environmental
and occupational exposure. The assessment of medium–long-term effects in HCWs who
had confirmed COVID-19, irrespective of whether they were hospitalized or had a posi-
tive SARS-CoV-2 molecular swab, was performed according to guidelines for managing
the long-term effects of COVID-19 [116]. All patients underwent a clinical examination,
including respiratory function tests, cardiac assessment with evaluation of heart rate vari-
ability (HRV), and administration of the Work Ability Index (WAI) questionnaire to assess
their work ability. For each patient, the biological samples were also collected for basic
biochemistry tests, immunological profiles, and biological aging analyses. Supplementary
Table S5 summarizes the characteristics of the study population, including demographic
variables, lifestyle, occupational history, basic biochemistry parameters, liver function,
inflammation, lung function, and HRV. Supplementary Table S6 reports all data on the
course of SARS-CoV-2 infection. The biological aging of HCWs was compared with that
of a positive control group for biological aging parameters, including n = 7 patients with
chronic obstructive pulmonary disease (COPD) who gave their final consent to participate
in the study [21], which had already been approved by the Ethics Committee (3849/AO/16)
in accordance with the principles of the Declaration of Helsinki.

4.2. Information Acquired through Questionnaires

An ad hoc structured questionnaire [117] was administered during interviews to elicit
information on demographics (age, sex, marital status) and other personal information
(mother/father age at birth, years of education), occupation [job title; hospital department;
total years worked; years spent in the current job; shift work (work was considered sched-
uled in day shift from 6 a.m. to 2 p.m., afternoon shift from 2 p.m. to 8 p.m., and night
shift from 8 p.m. to 6 a.m.); frequency of night shifts/month; job energy requirement
(expressed as metabolic equivalent, MET) at work; work injury], and medically relevant
complaints including cardiovascular disease, musculoskeletal disorder, spinal disc hernia,
gastrointestinal disease, endocrine disease, diabetes, respiratory disease, and tumors. The
Charlson comorbidity index, a method of predicting mortality by classifying or weighting
comorbid conditions (comorbidities), was calculated, excluding diabetes, tumors and/or
respiratory diseases, and other inflammatory conditions [118]. Smoking history (current
active smokers, former smokers, and never smokers) and pack-years [(number of cigarettes
smoked per day/20) × number of years smoked] were also recorded, as well as the ha-
bitual alcohol consumption (yes/no), alcohol intake (units of drink/day, each unit being
approximately 10–12 g alcohol intake), and binge drinking (>4 drink-units/day, i.e., more
than 40 g alcohol/day). Physical activity in leisure time was estimated according to the
International Physical Activity Questionnaire (IPAQ score).

4.3. Work Ability Assessment

The Work Ability Index (WAI), a self-assessment questionnaire consisting of 7 domains,
was used as previously described [118]. WAI ranged from 7 to 49 points; four categories
were identified to describe WAI levels: “poor” (score 7–27), “moderate” (score 28–36),
“good” (score 37–43), and “excellent” (score 44–49) work ability as a function of the total
WAI score. This is a valuable tool to identify any imbalances between what is required
(performance requirements) and what you are able to give (individual potential) [119].

4.4. Respiratory Function Tests

All lung function measurements, including forced expiratory volume in 1 s (FEV1),
forced vital capacity (FVC), forced expiratory flows at different lung volumes, total lung ca-
pacity (TLC), and residual volume (RV), were measured using a spirometer (Jaeger Master-
Screen PFT, PRO, Viasys Sanità, Firenze, Italy) according to the guidelines/recommendations
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of the American Thoracic Society/European Respiratory Society (ATS/ERS) [120]. Pre-
dicted normal values from the Communaute Europeenne du Carbon et de l’Acier (CECA)
were used [121].

4.5. Assessment of Autonomic Cardiac Balance and HRV Parameters

ECG was recorded during periodical health checks. Blood pressure was also measured
with an Omron 705IT electronic device (Omron Healthcare Europe, The Netherlands) while
the patient was lying quietly for at least 5 min, according to the recommendations of the
2023 European Society of Hypertension [122]. Subjects were instructed to avoid smoking
and to stop coffee and alcohol intake for 2 h and 48 h, respectively. They should have
had sufficient (at least 8 h) rest and must not have worked the night shift before the test
was performed. Blood pressure was measured once with a sphygmomanometer while the
patient was lying calmly. HRV was assessed by an ECG performed in a supine position
under physiologically stable conditions and using a device connected to the patient via
two electrodes. HRV data were acquired by a Bluetooth acquisition system (BT16 Plus,
FM, Monza, Italy). ECG was recorded for at least 5 min between 9 a.m. and 2 p.m., at rest
and under ideal temperature conditions. HRV was analyzed using Kubios HRV software
(ver. 3.3) [123]. Normal and aberrant complexes were identified, and all adjacent intervals
between normal beats over 5 min intervals were considered. We analyzed the spectral
components (HRV frequency domain variables) as the absolute values of power (ms2).
Power spectral density was analyzed with an autoregressive modeling-based method
(AR spectrum) using the default value for the model order, i.e., 16. The main spectral
components were very low frequency (VLF), low frequency (LF), high frequency (HF), and
the LF/HF ratio. The area under the curve of the spectral peaks within the frequencies
0.01–0.4, 0.01–0.04, 0.04–0.15, and 0.15–0.40 Hz were defined as the total power (TP),
very low-frequency power (VLF), low-frequency power (LF), and high-frequency power
(HF), respectively. In order to normalize LF and HF, we used the total power within the
frequency range of 0.01–0.4 Hz. The normalized low-frequency power (nLF = LF/TP)
corresponds to an index of combined sympathetic and vagal modulation [124] as well as
a baroreflex index [125,126], while the normalized HF power (nHF = HF/TP) represents
an index of vagal activity. The low-/high-frequency power ratio (LF/HF) is thus an index
of sympathovagal balance. Time domain measures included the standard deviation of
normal-to-normal RR intervals (SDNN) and the root mean square of successive RR interval
differences (RMSSD).

4.6. Samples Collection and IS Procedure

For each patient, blood samples were collected for basic biochemistry, immunological
profile, and biological aging analyses (i.e., TL and DNAmAge). During medical examina-
tion, the procedures of sputum induction and nasal swabbing were carried out for each
patient to collect both a sample of airway cells and nasal epithelium cells, respectively, for
biological aging analyses.

IS procedure was performed according to a standard protocol, and the IS sample was
processed as previously described [21].

4.7. Basic Biochemistry Analyses

Data on basic biochemistry included number of blood red cells, platelets, white cells,
lymphocytes, monocytes, neutrophils, basophils, eosinophils, hematocrit, hemoglobin,
blood glucose, triglycerides, cholesterol, low-density lipoprotein (LDL), high-density
lipoprotein (HDL), c-reactive protein (CRP), interleukin 6 (IL-6), alanine aminotransferase
(ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (gamma-GT), fer-
ritin, total bilirubin, protein profile, and creatinine. All the analyses were performed at the
Laboratory Medicine Unit (AOUP).
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4.8. DNA Extraction (from Biological Samples)

DNA was extracted from whole blood samples using the QIAamp DNA Mini Kit
(Qiagen, Milano, Italy) on a QIAcube System (Qiagen, Milano, Italy) for automated
high-throughput DNA purification, according to a customized protocol as previously
described [21].

DNA extraction was also carried out from the IS and nasal cells collected by the
automated QIAcube System (Qiagen, Milano, Italy) utilizing QIAamp DNA Mini Kit
(Qiagen, Milano, Italy) according to a customized protocol developed for highly viscous
samples as previously described [21]. DNA was quantified and checked for quality using
the QIAxpert Quantification System (Qiagen, Milano, Italy).

4.9. DNAmAge Analysis and AgeAcc Estimation

DNAmAge was determined by analyzing the methylation levels of five selected
markers (ELOVL2, C1orf132, KLF14, TRIM59, and FHL2) in genomic DNA using bisulfite
conversion and Pyrosequencing® methodology on PyroMark Q48 Autoprep (QIAGEN,
Milano, Italy), as previously described [127]. The methylation levels were expressed as a
percentage of methylated cytosines at the 5 CpG sites considered and were used for the
estimation of DNAmAge as previously reported [127]. All samples were analyzed 3 times
for each marker to verify the reproducibility of our results, and their average was used in
statistical analyses. All samples were analyzed on two different days, and the coefficient
of variation (CV) in replicate Pyrosequencing runs was 0.5%. AgeAcc was computed as
the discordance between the DNAmAge of blood leukocytes and IS cells and NCs and the
subjects’ chronological age.

4.10. TL Analysis

TL was determined using quantitative real-time PCR after DNA extraction from both
whole blood and IS samples [128]. This assay determines the ratio of telomere repeat copy
number (T) to a single nuclear copy gene (S) in experimental samples relative to the T/S
ratio of a reference pooled sample to determine measure TL in genomic DNA. Human (beta)
globin (hbg) was the single-copy gene used. The PCR runs were performed in triplicate
using a StepOnePlus Real-Time PCR System (Applied Biosystems, Milano, Italy), and the
average of the three T/S ratio measurements was considered in the statistical analyses. To
assess measurement reproducibility, 20% of samples were replicated on separate days, and
the CV for the average T/S ratio was accepted if less than 10%.

4.11. Statistical Analyses

Univariate and multivariate methods were used to select the appropriate models. The
analyses were performed using the statistical software StatsDirect and Rstudio. Regarding
the analysis of biological age, our hypothesis of an accelerated lung and nasal epithelium
caused by COVID-19 infection was converted into a model with two final outcomes: TL and
DNAmAge, as previously described [21]. The biological aging of HCWs after 1 year from
COVID-19 was compared to that of COPD patients as a positive control group for biological
aging parameters. For this comparison, we used the AgeAcc, i.e., the difference between
DNAmAge and chronological age, and TL predicted by regressing TL measurements on
chronologic age for each subject.

5. Conclusions

This study provides comprehensive insights into the biological aging and long-term
health impacts in pauci- and asymptomatic COVID-19 HCWs. By investigating persistent
symptoms and early molecular markers such as DNAmAge and TL in blood leukocytes,
NCs, and IS cells, several significant findings were revealed.
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5.1. Persistent Symptoms

Despite mild or asymptomatic initial infections, a significant portion of HCWs expe-
rienced persistent symptoms such as dyspnea, palpitations, peripheral neuropathy, and
cognitive issues up to one year after infection. This highlights the need for continuous
monitoring and support for HCWs, as these long-term symptoms can affect overall health
and work capacity.

5.2. Impact of SARS-CoV-2 Infection Duration on Biological Aging

Prolonged infection duration correlated with increased DNAmAge, suggesting that
sustained inflammatory responses and cellular stress contribute to biological aging. This
insight is crucial for developing targeted post-infection management strategies.

5.3. Key Determinants of Increased Biological Aging

Factors such as advancing age, male sex, presence of chronic diseases, daytime work,
elevated LDL and glycemia levels, use of drugs affecting HRV, reduced lung function, a
lower WAI and HR, and decreased lymphocyte count and hemoglobin levels were signif-
icantly associated with increased DNAmAge. Similarly, older age, increased LDL levels
and leukocyte count, a job with direct patient contact, and a reduction in lymphocyte
and neutrophil count were strongly associated with shorter TL. These findings under-
score the complex interplay of biological and environmental factors in cellular aging and
the importance of managing chronic conditions and maintaining healthy metabolic and
cardiovascular profiles to mitigate accelerated aging.

5.4. Biological Aging in Target Tissues of SARS-CoV-2 Infection

The study identified accelerated biological aging in IS cells compared to blood leuko-
cytes and NCs. This suggests that different tissues exhibit varying rates of aging after
SARS-CoV-2 infection, with lung tissue (represented by IS cells) being more susceptible to
accelerated aging.

5.5. Comparison with COPD Patients

The study found that HCWs exhibited greater biological aging in both blood leukocytes
and IS cells compared to COPD patients. This suggests that COVID-19 may induce more
significant epigenetic changes and telomere attrition than chronic inflammatory diseases
like COPD.

In conclusion, this study’s innovative approach to assessing biological aging across
multiple tissues reveals significant long-term impacts of SARS-CoV-2 infection. Our find-
ings highlight that lung tissue is particularly affected, with HCWs showing accelerated
aging in both blood leukocytes and IS cells compared to COPD patients. These results
emphasize the need for continuous health monitoring, tailored management strategies, and
supportive interventions for HCWs and pauci- and asymptomatic COVID-19 survivors,
who represent a significant portion of the general population. Addressing the long-term
consequences of the pandemic remains a critical public health priority. Further research
is essential to fully understand COVID-19’s impact on biological aging and to develop
effective strategies to mitigate these long-term health effects.
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